
Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

ESC-EN-HA-TR-2012-109

Technical Report
1166

Survey of Cyber Moving Targets

H. Okhravi
M.A. Rabe

T.J. Mayberry

W.G. Leonard
T.R. Hobson

D. Bigelow

W.W. Streilein

25 September 2013

Prepared for the Department of Defense under Air Force Contract FA8721-05-C-0002.

Approved for public release; distribution is unlimited.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
25 SEP 2013

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Survey of Cyber Moving Target Techniques

5a. CONTRACT NUMBER
FA8721-05-C-0002

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
H. Okhravi /M.A. Rabe, T.J. Mayberry, W.G. Leonard, T.R. Hobson, D.
Bigelow, and W.W. Streilein

5d. PROJECT NUMBER
2084

5e. TASK NUMBER
273

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
MIT Lincoln Laboratory 244 Wood Street Lexington MA 02420-9108

8. PERFORMING ORGANIZATION REPORT
NUMBER
TR-1166

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DoD

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This survey provides an overview of different cyber moving target techniques, their threat models, and
their technical details. A cyber moving target technique refers to any technique that attempts to defend a
system and increase the complexity of cyber attacks by making the system less homogeneous, less static,
and less deterministic. In this survey, we describe the technical details of each technique, identify the
proper threat model associated with the technique, and identify its implementation and operational cost.
Moreover, we describe the weaknesses of each technique based on the current proposed attacks and
bypassing exploits, and provide possible directions for future research in that area.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

149

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

This report is based on stndies performed at Lincoln Laboratory, a federally
funded research and development center operated by Massachusetts
Institute of Technology. This work was sponsored by the Department of
Defense, under Air Force Contract FA8721-05-C-0002.

This report may he reproduced to satisfy needs of U.S. Government
agencies.

The 66th Air Base Group Public Mfairs Office has
reviewed this report, and it is releasable to the National
Technical Information Service, where it will he available
to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission has been given to destroy this
document when it is no longer needed.

Survey of Cyber Moving Targets

H. Okhravi
M.A. Rabe

W.G. Leonard
T.R. Hobson
D. Bigelow

W.W. Streilein
Group 58

T.J. Mayberry
formerly Group 58

25 September 2013

Massachusetts Institute of Technology

Lincoln Laboratory

Technical Report 1166

Lexington Massachusetts

Approved for public release; distribution is unlimited.

This page intentionally left blank.

iii

EXECUTIVE SUMMARY

This survey provides an overview of different cyber moving target techniques, their threat models,
and their technical details. A cyber moving target technique refers to any technique that attempts to
defend a system and increase the complexity of cyber attacks by making the system less homogeneous,
less static, and less deterministic. In this survey, we describe the technical details of each technique,
identify the proper threat model associated with the technique, and identify its implementation and
operational cost. Moreover, we describe the weaknesses of each technique based on the current proposed
attacks and bypassing exploits, and provide possible directions for future research in that area.

This page intentionally left blank.

v

TABLE OF CONTENTS

Page

Executive Summary iii	

1. INTRODUCTION AND TAXONOMY 1	

1.1 Taxonomy of Moving Target Techniques 1	
1.2 Taxonomy of Attack Techniques 1	
1.3 Taxonomy of Entities Protected 2	
1.4 Cyber Kill Chain 3	
1.5 Taxonomy of Weaknesses 4	
1.6 Scope 4	

2. DYNAMIC RUNTIME ENVIRONMENT 5	

2.1 Address Space Randomization 5	
2.2 Instruction Set Randomization 20	

3. DYNAMIC SOFTWARE 41	

3.1 Software Diversity Using Distributed Coloring Algorithms 41	
3.2 Security Agility for Dynamic Execution Environments 44	
3.3 Proactive Obfuscation 46	
3.4 Program Differentiation 49	
3.5 Reverse Stack Execution in a Multivariant Execution Environment 52	

4. DYNAMIC NETWORKS 57	

4.1 Dynamic Network Address Translation 57	
4.2 Revere 60	
4.3 Randomized Intrusion-Tolerant Asynchronous Services 64	
4.4 Network Address Space Randomization 68	
4.5 Mutable Network 71	
4.6 Dynamic Backbone 74	
4.7 Active Repositioning in Cyberspace for Synchronized Evasion 77	

TABLE OF CONTENTS
(Continued)

Page

vi

5. DYNAMIC PLATFORMS 81	

5.1 Security Agility Toolkit 81	
5.2 Genesis 84	
5.3 Multivariant Execution 87	
5.4 Diversity through Machine Descriptions 90	
5.5 N-Variant Systems 94	
5.6 Trusted dynAmic Logical hEterogeNeity sysTem 98	
5.7 Intrusion Tolerance for Mission-Critical Services 101	
5.8 Generic Intrusion-Tolerant Architectures for Web Servers 104	
5.9 Self-Cleansing Intrusion Tolerance 108	
5.10 Genetic Algorithms for Computer Configurations 111	
5.11 Moving Attack Surface for Web Services 115	
5.12 Lightweight Portable Security 118	

6. DYNAMIC DATA 123	

6.1 Data Diversity through Fault Tolerance 123	
6.2 Redundant Data Diversity 126	
6.3 Data Randomization 129	
6.4 End-to-End Software Diversification 132	

References 137	
List of Acronyms 147

1

1. INTRODUCTION AND TAXONOMY

This survey provides an overview of different cyber moving target techniques, their threat models,
and their technical details. A cyber moving target technique refers to any technique that attempts to
defend a system and increase the complexity of cyber attacks by making the system less homogeneous,
less static, and less deterministic [1]. In this survey, we describe the technical details of each technique,
identify the proper threat model associated with the technique, and identify its implementation and
operational cost. Moreover, we describe the weaknesses of each technique based on the current proposed
attacks and bypassing exploits, and provide possible directions for future research in that area.

1.1 TAXONOMY OF MOVING TARGET TECHNIQUES

We could identify five top-level categories and two subcategories for moving target techniques.
Here we give a short description for each category.

1. Dynamic Runtime Environment: Techniques that change the environment presented to an
application by the operating system (OS) during execution dynamically.

1.1. Address Space Randomization: Techniques that change the layout of memory dynamically.
This can include the location of program code, libraries, stack/heap, and individual functions.

1.2. Instruction Set Randomization: Techniques that change the interface presented to an
application by the OS dynamically [58]. The interface can include the processor and system calls
used to manipulate the input/output (I/O) devices.

2. Dynamic Software: Techniques that change application’s code dynamically. The change can include
modifying the program instructions, their order, their grouping, and their format.

3. Dynamic Data: Techniques that change the format, syntax, encoding, or representation of application
data dynamically.

4. Dynamic Platforms: Techniques that change platform properties (e.g., central processing unit
(CPU), OS) dynamically. This can include the OS version, CPU architecture, OS instance, platform
data format, etc.

5. Dynamic Networks: Techniques that change network properties including protocols or addresses
dynamically.

1.2 TAXONOMY OF ATTACK TECHNIQUES

The effect of each moving target technique is described in terms of the attack technique that it
mitigates. Here we provide a brief definition for the attack techniques used in this report. The taxonomy

2

of attacks is a customized version of the Common Attack Pattern Enumeration and Classification
(CAPEC) attack categories [106].

1. Data Leakage Attacks: Attacks that actively target important information on a system, e.g., leakage
of crypto keys from memory.

2. Resource Attacks: Attacks that exhaust or manipulate shared resources in a system, e.g., denial-of-
service (DoS) using CPU saturation.

3. Injection: Attacks that force malicious behavior in the system.

3.1. Code Injection: Attacks that force malicious behavior in the system by inserting malicious code,
e.g., buffer overflow and script injection, and Structured Query Language (SQL) injection.

3.2. Control Injection: Attacks that force malicious behavior in the system by manipulating the
control of the system and without malicious code. Control can include timing, ordering, and
arguments of different operations, e.g., chaining existing code snippets together to achieve
malicious behavior—return-oriented programming (ROP) [81].

4. Spoofing: Attacks that fake identity of a user or a system, e.g., man-in-the-middle attack and phishing
attack.

5. Exploitation of Authentication: Attacks that compromise explicit or implicit authentication
processes in a system, e.g., cross-site scripting (XSS).

6. Exploitation of Privilege/Trust: Attacks that misuse granted privileges, e.g., session hijacking.

7. Scanning: Attacks that collect information passively or nonintrusively, e.g., port scanning.

8. Supply Chain/Physical Attacks: Attacks that target supply chain or physical security of a system,
e.g., malicious processor.

1.3 TAXONOMY OF ENTITIES PROTECTED

Each moving target technique is designed to protect specific entities in a system. Here we provide a
taxonomy of entities protected by the techniques we analyze in this survey.

1. Applications: All or specific applications are protected from network entities or other applications
running on the same system, e.g., protecting application memory location from other applications and
protecting database applications.

2. Operating System: The operating system is protected from network entities or malicious
applications running on top of it. This protection usually attempt to prevent privilege escalation or
access to the kernel-space and other applications, e.g., sandboxing suspicious applications.

3

3. Machine: All or specific types of machines (also called clients, hosts, or servers) are protected from
other network entities, e.g., changing the Internet Protocol (IP) addresses to make scanning more
difficult and protecting web servers behind a firewall.

4. Network: A network or subnet is protected from other networks, e.g., dynamically changing IP
address on the virtual private network (VPN) gateway to protect against malicious connections.

5. Traffic: Confidentiality and/or integrity of all or specific types of network traffic is protected, e.g.,
dynamically changing protocols to make traffic injection more difficult.

6. Session: A set of user operations (a session or a transaction) is protected from other untrusted
operations, e.g., a secure web transaction is protected from other web pages browsed on the same
machine.

7. Data: Confidentiality or integrity of data handled by applications or stored on the machine is
protected, e.g., changing data encoding to prevent malicious data modifications.

1.4 CYBER KILL CHAIN

Each moving target technique is focused on disrupting certain phases of a successful attack. For
instance, while a technique may make it less likely for an exploit to succeed during launch, another
focuses on making information collection on the target more challenging. In this survey, we try to identify
the phase of an attack each technique is targeting. These phases are also referred to as the cyber kill chain.

1. Reconnaissance: The attacker collects useful information about the target.

2. Access: The attacker tries to connect or communicate with the target to identify its properties
(versions, vulnerabilities, configurations, etc.).

3. Exploit Development: The attacker develops an exploit for a vulnerability in the system in order to
gain a foothold or escalate his privilege.

4. Attack Launch: The attacker delivers the exploit to the target. This can be through a network
connection, using phishing-like attacks, or using a more sophisticated supply chain or gap jumping
attack (e.g., infected USB drive).

5. Persistence: The attacker installs additional backdoors or access channels to keep his persistence and
access to the system.

We choose this kill chain because it is well suited for the types of protections offered in moving
target defenses. There are other types of kill chains proposed in the literature that are better suited for
specific domains in cyber. They include cyber war kill chain (phases: reconnaissance, weaponize,
delivery, exploit, install, command and control, and act on objectives), action-oriented kill chain (phases:

4

deter, protect, detect, react, and survive), detection kill chain (phases: herd, perturb, disturb, etc.), and
others.

1.5 TAXONOMY OF WEAKNESSES

When identifying the weaknesses associated with each moving target technique, we consider four
types of weaknesses that can make the technique ineffective. One or all of these weaknesses can exist in a
technique and any of them can defeat the purpose of that technique.

1. Overcome Movement: With this weakness, the movement happens and the pattern of movement is
random or controlled, but the adversary can still attack the surface protected by the moving target
technique. For example, injecting many copies of the exploit to overcome address space
randomization is a form of overcoming the movement.

2. Predict Movement: With this weakness, the movement happens and the pattern of movement is
random or controlled, but the adversary can still attack the surface protected by the moving target
technique. For example, leaking addresses to predict the location of libraries is a form of predicting
the movement in address space randomization.

3. Limit Movement: With this weakness, the movement happens, but the pattern of movement is
limited by adversary’s actions. For example, the adversary can fill up memory to limit the
randomness in address space randomization (a.k.a code spraying).

4. Disable Movement: With this weakness, the adversary explicitly disables the movement. For
example, address space randomization can be disabled in the OS by pushing a bad configuration.

1.6 SCOPE

This survey tries to provide a complete representative set of moving target techniques from open
and public sources of information. Although we expect that there are other commercial product or
academic projects with different names that implement similar moving target techniques or some
combination thereof, to the best of our knowledge they are not fundamentally different in their concepts
and workings.

5

2. DYNAMIC RUNTIME ENVIRONMENT

2.1 ADDRESS SPACE RANDOMIZATION

2.1.1 Address Space Layout Permutation

Last Updated: 7/18/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: Address Space Randomization

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [2] defends against buffer overflow attacks on the stack and heap from an
adversary that can provide arbitrary input to a vulnerable program. A buffer overflow attack
occurs when an attacker can provide malformed input to a program that causes it to write the
input incorrectly to areas outside the allotted memory location. This technique defends against
direct overflow attacks, where the goal is to overwrite the return pointer on the stack, and indirect
attacks where the goal is to overwrite a function pointer on the heap that is later dereferenced. It
does not protect against adversaries that have local access to a machine.

Description:

Details: This technique performs stack randomization at both the user and kernel levels. User-
level permutation includes both a coarse randomization (code and data segments are randomly
placed) and a fine-grained randomization (functions and variables are randomized inside code and
data segments). The user-level permutation is implemented as a binary rewriting tool that
processes Executable and Linkable Format (ELF) executables and outputs a randomized version
with the same behavior. This rewriting does not require source code access or recompilation. At
the kernel level, the starting location of the user stack is randomly chosen and the heap is
removed from its usual place inside the data section and randomly placed in program memory.
Additionally, the mmap() function is patched so that individual pages inside the heap are
randomly allocated.

Entities Protected: All programs running on the machine are protected from code or control
injection through individual, independent program randomization.

Deployment: This technique could be deployed on any generic machine.

6

Execution Overhead:

• The required kernel changes do not affect performance to a significant degree and user-level
changes occur as a preprocessing step and so do not affect execution speed.

Memory Overhead:

• Experimental results show an approximately 20% increase in executable size and memory
footprint.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

7

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: Memory randomization is more effective when it is combined with various
types of memory guards [96–105].

Weaknesses: As with many other address randomization techniques, the entropy of this scheme is
limited [78, 87] by the architecture machine width (i.e., number of bits: 32 or 64). In this case, they do get
very close to that limit with 29 bits of entropy for the heap location, 28 bits for the stack location, 20 bits
in mmap(), and 20 bits within the data and code segments. This far exceeds other related schemes.
However, their scheme is not resistant to attacks that can violate “memory secrecy” [83] through leakage
or local access. It cannot randomize inside of stack frames so it is also vulnerable to ROP attacks. It may
also be vulnerable to a heap spraying technique [79] where large chunks are allocated quickly to try to
reduce uncertainty on the heap.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Attacker level of effort is raised substantially. Although it may be possible
to mount attacks using address leakage, it would require additional effort that is much higher than finding
and exploiting the original buffer overflow.

Availability: Prototyped by authors but not publicly available.

Additional Considerations: None

Proposed Research: Developing a memory protection technique that does not assume memory
secrecy and provide high entropy is an important missing piece.

8

Funding: Unknown

2.1.2 DieHard

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: Address Space Randomization

Threat Model:

Attack Technique Mitigated: Code and Control Injection

Details: DieHard [3, 85] protects the heap from indirect buffer overflow attacks where an
attacker attempts to overwrite a function pointer to cause control injection.

Description:

Details: DieHard attempts to defend against four classes of vulnerabilities that could lead
to program crash or code/control injection: invalid frees, buffer overflows, dangling pointers, and
uninitialized reads. An invalid free is one where the program attempts a free operation on a
pointer that has already been freed or on an object that was not dynamically allocated. A buffer
overflow occurs when a program attempts to write to a location past the end of a buffer and
instead overwrites a data location belonging to another object. A dangling pointer bug is present
when an object is freed but pointers to it still remain and are eventually dereferenced.
Uninitialized reads occur when a variable is declared and read before it is initialized. This usually
results in the data that was previously in the location this variable was allocated at being read.

The strategy used has three main elements: address randomization, heap spacing, and
replication. Addresses of heap objects are randomized using a different seed each time the
program is executed. Additionally, the heap is sized to be M times larger than is necessary for
program execution. This allows for extra space between objects so it is less likely that a buffer
overflow will result in overwriting of another object. DieHard also maintains N copies of the heap
initialized with different random seeds. Whenever a memory operation is done, a “vote” occurs
between the copies. These three techniques together provide a probabilistic measure of defense
against the four classes of vulnerabilities. Since there are multiple copies with different
randomized addresses, any targeted buffer overflow would end up segmenting the control flow
(i.e. replicas would end up executing different segments of code). This would be discovered and a
recovery mechanism could possibly be used [89, 91, 93].

Entities Protected: Can be configured to protect any or all programs on a machine.

9

Deployment: This technique could be deployed on any generic machine by patching the
OS.

Execution Overhead:

• Experimental results show an execution overhead of 50–100% with M = 2 and 3 replicas.

Memory Overhead:

• Because of the increased heap size and replicas the memory overhead is quite large, at least
M*N.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

10

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: DieHard and address space layout randomization (ASLR) can interfere with
each other and potentially have negative impact. DieHard consumes a large amount of memory, which
makes the ASLR less effective.

Weaknesses: Provides only probabilistic security, depending on the parameters chosen a system
might be vulnerable to a brute force attack. It also assumes “memory secrecy.”

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Makes it difficult to mount injection attacks against the heap and even more
difficult to ensure that a given attack will work 100% of the time.

Availability: The code is available online as well as a demonstration that is configured to provide
heap randomization to Mozilla Firefox in Windows.

Additional Considerations:

• In the process of stopping buffer overflow attacks, this technique also allows programs to
recover from many common errors without crashing (see [60] for failure oblivious computing).
Most other memory randomization techniques will prevent an attacker from gaining control,
but will still cause the program to crash upon attempted exploitation of a buffer overflow.

11

Proposed Research: A low-overhead memory protection technique that does not assume memory
secrecy is still an open research problem. The memory overhead of DieHard is really significant.

Funding: National Science Foundation, Intel Corporation, Microsoft Research

2.1.3 Instruction Level Memory Randomization

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: Address Space Randomization

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [4] defends against buffer overflow attacks on the stack and heap
from an adversary that can provide arbitrary input to a vulnerable program. A buffer overflow
attack occurs when an attacker can provide malformed input to a program that incorrectly causes
it to write the input to areas outside the allotted memory location. This technique defends against
direct overflow attacks, where the goal is to overwrite the return pointer on the stack, and indirect
attacks where the goal is to overwrite a function pointer on the heap that is later dereferenced. It
does not protect against adversaries that have local access to a machine.

Description:

Details: This technique randomizes both the stack and heap. The randomization takes the
form of a program that transforms an executable into a randomized version that has the same
behavior. Random padding is added at the start of the stack and before the return address in every
stack frame by modifying the assembly code that creates these stack frames. The placement of
heap chunks is also randomized by requesting a chunk much larger than is needed and then
placing the original chunk randomly inside that larger chunk. The main advantage of this
technique is that it does not need access to source code or recompilation of target programs. It
matches with the current software distribution model in that it could be hooked into an installer
application that would randomize the executable differently for every machine where it is
deployed.

Entities Protected: Any or all programs running on a machine that have been processed by
the binary rewriter.

12

Deployment: Can be deployed to any generic machine as part of a platform configuration
or individual programs can be manually randomized. This method is a separate application and
does not require modification to any other component.

Execution Overhead:

• None

Memory Overhead:

• Stack and heap size increased by approximately 20%.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

(No modification required)

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

13

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique can be complimentary to ASLR, but it can have a conflict with
DieHard. Applying both DieHard and this technique can make the memory overhead very large.

Weaknesses: This scheme only partially protects against return-oriented programming. It makes it
more difficult to put arguments onto the stack that will be passed to the target library function, but does
not fully prevent redirection of program control. The randomness injected is also limited by the machine
architecture, namely it cannot be more than 32-bits (and it probably much lower than that in practice).
They also cannot rewrite some instructions so in their experimental results they only protected about 70%
of each executable. This technique is not effective against attacks that violate memory secrecy and may
be vulnerable to heap spraying.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Increases the level of effort for attackers in many circumstances. Since some
instruction sequences cannot be processed by this technique, portions of executables may remain
vulnerable.

Availability: No code publicly available.

14

Additional Considerations:

• This approach is notably different from other memory randomization techniques in that it is
done as a binary rewriting. This means that it could actually be installed on a software
distribution server that would uniquely randomize executables as they were being distributed
(and thus require no configuration or changes of any kind on the client).

Proposed Research: A low-overhead memory protection technique that does not assume memory
secrecy is still an open research problem.

Funding: National Science Foundation

2.1.4 Operating System Randomization

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: Address Space Randomization

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [5] attempts to defend against buffer overflow attacks through stack
randomization as well as decrease the likelihood of injected code successfully running through
library and system call randomization. It protects against an adversary that can control the input
to an application or service.

Description:

Details: This technique was one of the earliest memory randomization attempts. The
authors use three different techniques to add randomness to the program environment: stack
randomization, system call randomization, and movement of libc. The starting location of the
stack is randomly offset by a 15-bit value and the system call table is increased to 512 (9-bits).
The starting location of libc is moved, but it is done semi-deterministically. This adds some
heterogeneity to systems but is not hard to bypass.

Entities Protected: All programs running on a machine using this technique.

Deployment: This technique could be applied to any generic machine by modifying the
OS.

15

Execution Overhead:

• None

Memory Overhead:

• Stack size is increased slightly due to the offset but it is negligible.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

16

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: ASLR has conflict with DieHard. The large amount of memory used in
DieHard makes ASLR less effective. ASLR is more effective if it is combined with various memory
guards [96–105].

Weaknesses: This scheme overall is very weak. Its redeeming quality is that it has essentially no
runtime penalties and integrates seamlessly with the system. The amount of entropy it introduces is very
easy to brute force and the system call randomization is not effective against return-oriented attacks that
use library calls. It also does not prevent attacks using relative addresses [80, 84, 86, 88] as it only moves
the starting location of the stack. The library protection itself can be circumvented as long as the attacker
knows the system is using this approach (it makes no real attempt to randomize the library locations, only
move them somewhere that an attacker is less likely to look).

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Raises the level of effort required to exploit a buffer overflow attack and
makes it harder to have a single attack that works on all vulnerable machines.

Availability: No source code is publicly available. Similar variants of ASLR is implemented in
Windows Vista and 7 [6, 73, 76, 77], Mac OS X v10.5 [7] and newer, Linux since 2.6.12 [8], and iOS 4.3
and newer [9].

Additional Considerations: ASLR usually does not have a significant overhead, and once
implemented, it can be applied easily to any system by patching the system. As a result, even considering
its weaknesses it is advisable to use ASLR because there is no significant downside to it. ASLR-like
techniques can also be implemented in the hardware (see [72]). For a formal model of ASLR-like
defenses see [75].

17

Proposed Research: ASLR implementations suffer from a common set of problems that include
low entropy, memory secrecy assumption, and limited application of randomization. An effective
memory protection scheme must be developed that does not make these assumptions.

Funding: Unknown

2.1.5 Function Pointer Encryption

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: Address Space Randomization

Threat Model:

Attack Technique Mitigated: Code Injection and Control Injection

Details: This technique [10] defends against control injection through indirect buffer
overflow attacks on the heap by encrypting all function pointers so they cannot be modified.

Description:

Details: This technique aims to prevent indirect buffer overflow attacks by making it
difficult for the attacker to overwrite a function pointer with a chosen value. The GNU Compiler
Collection (GCC) is patched so that at link/load time all function pointers *fp are replaced by *fp
XOR address(fp) XOR rand where rand is a 32-bit random number, chosen at the start of
execution. Using rand provides a high degree of unpredictability if the attacker does not know it,
and it is chosen independently at the start of every execution so it should be difficult to guess.
Incorporating address(fp) makes two different pointers to the same function have different keys.
Additionally, this makes it so that the attacker cannot learn an encrypted value for one pointer and
substitute it for another, changing the location of the original pointer. The “key” is effectively
address(fp) XOR rand and is used symmetrically to decrypt the respective function pointer when
it is dereferenced. If an attacker manages to find a buffer overflow vulnerability and exploit it to
overwrite a function pointer, he will not be able to forge an encrypted address that will point to
his chosen location when it is decrypted (since he does not know rand).

Entities Protected: All programs running on a machine utilizing this technique.

Deployment: This technique could be applied to any generic machine by modifying the
compiler and OS.

18

Execution Overhead:

• The authors show an experimental slowdown of approximately 4%.

Memory Overhead:

• The size of the executable in memory is increased by addition of the encryption/decryption
keys. The paper does not measure this effect but it is likely small (each function pointer
approximately doubles in size).

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

19

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: None

Weaknesses: This technique is vulnerable to an attacker that has a copy of the program and can
learn the encrypted value of a function pointer at runtime (through violation of memory secrecy). The
function pointer is masked by its own address, which can be determined by an attacker running a copy of
the program, and a random key, which can be deduced if the encrypted function pointer is known along
with the unencrypted function pointer and its address (since the encryption function is just XOR). This
effectively recovers the secret encryption key and would allow an attacker to forge a pointer to any
chosen location that would work for any function pointer in the program (not just the one that the attacker
originally learned). Techniques exist that would allow an attacker to exploit a vulnerable program to
obtain one or more encrypted function pointers.

The above threat can be partially mitigated by using a cryptographic hash function instead of XOR
when combining rand and addr(fp). This would still allow an attacker to forge the specific function
pointer that was leaked to him, but it would not make other unrelated function pointers vulnerable (since
the hash cannot be reversed and rand is not learned). Load time would be significantly slower while the
linker computes hashes for each function pointer, but runtime would be the same because encryption and
decryption would still be XOR (just the calculation of the individual keys changes). Full mitigation of this
threat requires use of an encryption function that is secure against a known plaintext/ciphertext attack.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

20

Impact on Attackers: Makes it difficult for an attacker to redirect program control to a chosen
address unless he can both obtain a copy of the program executable and violate memory secrecy to obtain
encrypted addresses.

Availability: This technique is used in several Linux distributions that we know about. Fedora Core
encrypts function pointers in libc but not in other programs or libraries. Red Hat Enterprise has a
reference to encrypting function pointers in one of its whitepapers but it is unclear what the scope of it is
in their implementation.

Additional Considerations: This technique is also like ASLR. It has no significant downside, so if
it is available, it is advisable to use it even if it has weaknesses.

Proposed Research: In the original paper, XOR was chosen as an encryption function because it is
very fast and causes little overhead in the program execution. Using a secure encryption function at the
time was not possible. Recently, however, Intel has added a hardware instruction set for Advanced
Encryption Standard (AES) that can encrypt/decrypt in a small number of cycles. We propose that this
scheme be implemented with XOR replaced by AES encryption/decryption done in hardware in order to
evaluate the effect on performance. Such a scheme would be secure against an attacker with any
knowledge of the program except the encryption key. The question of where to store the encryption key is
still open, but it should be possible to store it such that it would require an additional exploit in the kernel
to bypass. It may also be possible to extend this technique to direct buffer overflow attacks (overwriting
stack return addresses) but the implementation would be considerably different.

Barring AES encryption, this technique could also be made more robust by combining it with some
kind of memory randomization. The most straightforward method would be to choose one that is
implemented as a binary rewriter; from the point of view of the loader which does the encryption it would
be no different but the executable on each machine would be randomized differently, making it much
more difficult for an attacker (see above attack requirements).

Funding: National Science Foundation, Air Force Research Laboratory

2.2 INSTRUCTION SET RANDOMIZATION

2.2.1 G-Free

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: Instruction Set Randomization (ISR)

21

Threat Model:

Attack Technique Mitigated: Control Injection

Details: This technique [11] aims to mitigate ROP attacks against executables compiled
with the modified compiler. It does not fully protect against return-to-libc type attacks where the
attacker wishes to execute an entire function from the target program.

Description:

Details: ROP attacks consist of an attacker redirecting control of a program back into itself
at specific useful sequences of instructions. This way, no code needs to be injected but the
attacker can still achieve malicious behavior by running pieces of the original executable in the
wrong order to achieve arbitrary results. The authors note that all ROP attacks chain together
pieces of code that ultimately each end with a free branch instruction. These free branch
instructions are specific uses of return or jump instructions [82] where the target of the branch is
dependent on a value on the stack or in a register (things that can be compromised by the
attacker). If the attacker cannot find any useful code ending in a free branch, then he can only
execute full function calls like in a return-to-libc attack, effectively eliminating generalized ROP.

The first step to stopping ROP is eliminating all misaligned free branch instructions. Since
modern instruction sets are variable length, an attacker can often take a series of instructions and,
by jumping into the middle of one of those instructions, execute an instruction on the CPU that
never originally existed in the executable. This new instruction is a combination of the ending bits
from one instruction and the starting bits of the next. Any free branch instructions that could be
created in this way are a side effect of instruction ordering, and removing them would reduce the
number of free branches available to an attacker by a large amount. They must be removed
carefully, however, since the program semantics must remain unchanged. The authors accomplish
this by scanning for these misaligned free branch instructions and inserting No Operation
Performed (NOP) instructions to break them up. NOPs do not effect program execution and so
can safely act as buffers to prevent adjoining instructions from incidentally creating a misaligned
free branch. Additionally, these NOPs are arranged into a so-called alignment sled, which is a
long sequence of NOPs, so that no matter what the alignment was when execution reached the
start of the sled, by the time it reaches the end it will be realigned correctly. This is possible
because NOPs are the shortest instruction and eventually execution will align onto one of them
and continue normally.

The second protection mechanism used is a careful encryption of the return pointer on the
stack. At the function call entry point, the return pointer is encrypted (using XOR with a random
key) and pushed onto the stack. A set of instructions is also inserted as a footer, directly above the
return instruction, so that the pointer is decrypted before return is called. If, at any point in the
middle of the function, a stack overflow occurs, an attacker could not put a value into the return

22

pointer that would be successfully decrypted into his target address. These two techniques
together prevent generalized return-oriented attacks.

Entities Protected: Protects all binaries compiled with the modified compiler.

Deployment: Can be deployed on any generic machine by modifying the compiler.

Execution Overhead:

• Approximately 3% slowdown.

Memory Overhead:

• Approximately 26% increase in executable size.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

23

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: A ROP protection technique (such as G-Free) should ideally be combined with
other memory protection techniques (such as ASLR or function pointer encryption).

Weaknesses: The encryption used is simply XOR so this technique relies on the fact that the
attacker cannot read portions of the memory (memory secrecy) [56, 65, 74]. If the attacker could gain
access to the return pointer value, he could recover the key and forge a new return pointer that would be
interpreted correctly by the return instruction.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Restricts attackers to return-to-libc style attacks where whole functions are
used instead of attacks using gadgets or misaligned instructions.

Availability: No code publicly available.

Additional Considerations: A ROP protection technique is only effective when it is applied to
every application running on a machine. If an application or library is not compiled with this technique,
the entire system is vulnerable to ROP attack. This makes compiler-level defenses against ROP limited in

24

scope. There are similar techniques for protection against specific types of attacks [49] (e.g., spraying
attacks).

Proposed Research: An OS-level protection against ROP is necessary to defend against ROP in all
the libraries and applications. More importantly, the actual capability of ROP attacks is unknown at this
point. More research is required to understand the full power of ROP attacks.

Funding: European Union Seventh Framework Programme and European Commission

2.2.2 Practical Software Dynamic Translation

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: Instruction Set Randomization

Threat Model:

Attack Technique Mitigated: Code Injection

Details: This technique [12] protects against code injection into running binaries from all
vectors. It does not protect against return oriented attacks and assumes that the OS is secure.

Description:

Details: Previous ISR techniques have two downsides that make them very unappealing:
slow execution due to the requirement for an emulator to run any executable code and a weak
encryption function, namely XOR. This scheme fixes the first problem by using a very
lightweight virtual machine (VM) for execution and the second by switching to AES for
encryption. They use an existing VM called Strata [48] for their ISR scheme, modified to allow
for the necessary binary rewriting. When an executable is loaded from disk, Strata encrypts it
block by block using AES. During execution, each time the program counter would point to an
encrypted instruction, Strata decrypts the block that it is part of and continues by calling the
regular fetch instruction. Each instruction also comes with a tag that can be verified so that after
decryption Strata can decide whether the code is legitimate or if it has been injected. Any injected
code could not match the tag, let alone produce a valid, useful instruction for the attacker since he
does not know the encryption key used. To speed up execution, once the blocks are decrypted
they are kept in a cache for reuse. The encryption key is generated fresh for every program
execution and is kept by the VM so it cannot be read or altered by the program.

Entities Protected: All executables running on the Strata VM.

25

Deployment: Can be deployed on any generic machine by adding an extra virtualization
layer.

Execution Overhead:

• Up to a 20% slowdown in execution.

Memory Overhead:

• Up to a 70% increase in executable size overhead and memory footprint.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

26

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: Because of relying on a virtualization layer, this technique is really a stand
alone technique that does not combine well with other OS-level defenses.

Weaknesses: AES is used in Electronic Codebook (ECB) mode that encrypts two identical blocks
to the same value. This means that an attacker could execute a replay attack by finding useful encrypted
instructions that exist in the executable and injecting them as shellcode. ECB is used for efficiency
reasons so that fewer decryptions are required. Additionally, the Strata VM itself becomes a new point of
attack since it holds all the keys and is in charge of readying instructions for execution.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This techniques makes it difficult for an attacker to inject arbitrary code into
an executable. The attacker would need to brute force the encryption key in order to forge instructions
that would decrypt to anything useful. More likely, the attack vector will shift to ROP, which is not
mitigated with this technique.

Availability: No code publicly available.

Additional Considerations: The memory and execution overhead may become significant if all
applications are virtualized in this manner. A similar technique is proposed in [55, 62].

27

Proposed Research: As with other techniques using encryption, this could benefit from hardware
AES instructions recently added to Intel processors.

Funding: DARPA, National Science Foundation

2.2.3 RandSys

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategories: Address Space Randomization and ISR

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [13] defends against code injection and control injection from
buffer overflow attacks on the stack and heap. This method is only focused on remote machine-
code injection attacks. This method also assumes that the kernel is safe and it would not protect
against kernel-level code injection attacks.

Description:

Details: This is a hybrid ISR and ASLR technique. It uses subsets of techniques from each
category along with some additional guards to create a new implementation.

For ISR, it implements system call randomization between user space and kernel space
(similar to [64]). When a process is created, the exec system call is intercepted in the kernel and
control is given to RandSys. RandSys searches for all system calls in the application then takes
their location in memory and generates a new, random system call number using a secret key
stored in kernel space. This requires rewriting the system call dispatcher in the kernel to decrypt
the system call numbers at runtime.

For ASLR, it implements library re-mapping and function randomization. Library re-
mapping randomizes the library base addresses and reorganizes the internal functions. This makes
it more difficult to predict both the absolute and relative addresses. The import and export
function tables used by the dynamic linker are also randomized. The function randomization
makes the name-lookup of each function unique to each process. Different randomization
algorithms are used depending on whether the function is being imported or exported. Due to this,
a separate function name resolver needs to be created to tie the imported and exported function
names back together at runtime.

28

Additional protections are also implemented with RandSys. Decoy entries are placed in the
function import and export tables. Each decoy points to a guard page which will cause an access
violation exception if there is an attempt to read, write, or execute it. RandSys also implements a
method for dynamic injection detection. A code page with injected shell code will have two
properties that can be detected: it will be writable and it will not be mapped from the executable
file. Whenever a system call or library function is invoked, a recursive stack-based inspection
algorithm can determine if any of those code pages exist. It hooks into the exception handler and
watches for such exceptions. It will attempt to terminate any program that has such an exception.

Entities Protected: All programs running on a machine utilizing this technique.

Deployment: Can be deployed on any generic machine by modifying its OS.

Execution Overhead:

• Increased system call overhead (difficult to estimate but could increase execution overhead by
up to 20%).

• Additional overhead introduced by one-time disassembly/analysis of each executable, up to
several minutes per executable.

Memory Overhead:

• None

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

29

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: The ASLR implemented by RandSys cannot be combined with another ASLR
implementation, so one has to be selected. Also, it is desired to combine a solution like RandSys with a
ROP protection technique.

Weaknesses: This defense can be circumvented with a ROP attack that can find the location of the
randomized libraries (through an independent leakage attack or other violation of memory secrecy or
brute force).

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

30

Impact on Attackers: Makes it difficult for an attacker to inject code into a running program and
increases the level of effort required to redirect program control to a chosen location.

Availability: This implementation has been prototyped for both Windows and Linux but there is
not a publicly available version of it.

Additional Considerations: This technique breaks self-modifying codes. It also requires an
additional disassembly step for each application.

Proposed Research: RandSys mainly protects system calls. An extension to RandSys that protects
other library calls is an open problem (see [61]). In addition, this type of protection does not prevent ROP
attacks. A complete protection against typical code injection and ROP attacks is an open problem.

Funding: National Science Foundation, Microsoft Research

2.2.4 Randomized Instruction Set Emulation

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: ISR

Threat Model:

Attack Technique Mitigated: Code Injection

Details: This method [14, 63] is targeted at stopping external binary code injection into an
executing program. The keys used for randomization are stored in the same memory space as the
running process so it relies on the assumption that the process memory cannot be read by an
attacker.

Description:

Details: Randomized Instruction Set Emulation (RISE) is a software-based ISR technique
built on top of the open source Valgrind IA32-to-IA32 binary translator. It scrambles the
instruction set at load-time and descrambles them at runtime. It runs in user-space and does not
require any modification of the OS or program being run because it is running inside an emulator.
It can be run on a per-program basis so it does not interfere with programs like compilers. RISE
scrambles all executable portions of a process, including libraries, by XOR-ing each byte of the
process’ code with a randomization mask. RISE has two methods of randomization. The first
method is a tiled method that involves generating a random mask with two or more pages before
execution and XOR-ing each byte in the code with a byte in the mask. The mask is read from

31

/dev/urandom and is stored in a fixed location right before the executable. The second method
uses a one-time pad by using a unique mask for each code page. The masks are not generated
until the page is first accessed.

In both cases, any code that is injected into the program will be decrypted using the masks
and likely result in an invalid execution. For an attacker to circumvent this, he would have to be
able to generate a code segment that decrypts correctly into another one with his desired behavior.
Ideally, this can only be done if he discovers the encryption keys.

Entities Protected: Any program running inside the RISE emulator.

Deployment: This technique can be deployed on any generic machine by adding an
emulator.

Execution Overhead:

• Additional 5% increase in overhead on top of Valgrind overhead.

• Valgrind adds a minimum of 400% overhead per the documentation.

Memory Overhead:

• Each process creates a private copy of all loaded libraries in virtual memory.

• The one-time pad randomization doubles the amount of memory needed for the code.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

32

 Infrastructure

(No modification required)

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: RISE relies on a emulation layer (Valgrind). If this is to be used for all of the
applications, the overhead will be significant.

Weaknesses: This framework does not protect against attacks that target functions or pointers,
including ROP attacks. Additionally, an attacker that can violate memory secrecy could read the key
directly from memory or recover an encrypted code segment that, along with the unencrypted segment
obtained from the original executable, can be used to deduce the key.

33

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique makes it difficult for an attacker to inject viable shellcode
into an application running inside the RISE emulator, without having an independent vulnerability that
can violate memory secrecy.

Availability: Prototype available under GPL at http://cs.unm.edu/˜immsec.

Additional Considerations: The large overhead introduced by the emulation layer can make RISE
impractical for real-world applications. See [57] for a discussion of performance issues.

Proposed Research: Similar to the function pointer encryption technique above, RISE could
benefit from the hardware level AES instruction providing an encryption scheme resistant to the known
plaintext attack outlined above.

Funding: National Science Foundation, Office of Naval Research, DARPA, Sandia National
Laboratories, Hewlett-Packard, Microsoft Research, Intel Corporation

2.2.5 SQLRand

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: ISR

Threat Model:

Attack Technique Mitigated: Code Injection

Details: SQLRand [15] aims to protect against SQL injection attacks in situations where
the query depends partially on untrusted input.

Description:

Details: SQLRand is a system for randomizing the SQL query language to prevent SQL
injection attacks. The creators note that injection attacks on SQL can be thought of similarly to
buffer-overflow-based code injection attacks. Their methods for SQL are based on similar
methods in RISE for such attacks. The SQL language is randomized so that any code that was
injected will not run (it will not match the new randomized language). A base SQL query
(without runtime criteria derived from user input) is sent to a proxy server to be randomized and
returned. The randomization is done by appending a chosen integer to the end of every keyword

34

in the SQL language. When the query is executed, it is again sent to the proxy that derandomizes
it and passes it on to the database server. Any code that was injected into the query by the user
will not match the new randomized language and will cause the query to fail.

Entities Protected: Any database application that uses the SQLRand proxy.

Deployment: Can be deployed on a network as a standalone proxy or on the machine that
runs the database software. Requiring use of the proxy to access the database would increase
security.

Execution Overhead:

• The randomization is relatively simple and very fast, experimental query response times were
increased by 6 milliseconds.

Memory Overhead:

• None

Network Overhead:

• Requires a proxy for all traffic going to the database server.

Hardware Costs:

• Can be run on the same server as the database software, but could also be run as an independent
server for increased speed.

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

(No modification is required)

35

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: None

Weaknesses: If the randomized SQL query is ever leaked or accessed by the attacker then he can
produce valid injection code. This is very common with web applications that often report the query used
upon failure. Developers would have to be very sure that error messages were sanitized and no other paths
for query leakage were introduced. However, since most SQL injection attacks start by discovering a
query (otherwise the attacker would have no knowledge of the database structure), this seems like a very
large weakness.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

36

Impact on Attackers: Increases the level of effort for SQL injection attacks by making it more
difficult for attackers to generate valid injection code. It requires them to either brute force the random
key or find a way to leak an existing randomized query.

Availability: No code is publicly available.

Additional Considerations: This approach requires every use of a SQL query to be rewritten (in
the source code) with this randomization in mind. In particular, the developer must identify the parts of
the query that will always remain the same and the parts that are based on user input. Since the vast
majority of SQL injection attacks occur because the developer did not take the time to do this in the first
place (if he did there is already a method for sanitizing inputs using the prepare command), this seems
like a wasted effort. Moreover, the scope of the protection is also very limited.

Proposed Research: There are existing, effective techniques to stop SQL injection attacks. No
research is proposed.

Funding: Unknown

2.2.6 Against Code Injection with System Call Randomization

Last Updated: 6/29/2012

Defense Category: Dynamic Runtime Environment

Defense Subcategory: ISR

Threat Model:

Attack Technique Mitigated: Code Injection

Details: This technique [16] protects against injection of code into an application with a
buffer overflow vulnerability. This technique is only effective against injected code that requires
the use of system calls.

Description:

Details: First, the compiler is modified so that each system call number is changed from 𝑥
to 𝑓(𝑟, 𝑥) where 𝑓 is a random permutation that takes 𝑟 as an input seed. In practice, they use
XOR as 𝑓. This means that every system call number is replaced by a randomly chosen
pseudonym. Any code that is injected will not know this mapping and thus cannot produce
shellcode that invokes the correct system call. The kernel system call dispatch is changed so that
it knows 𝑓 and 𝑟 and can derandomize the input number to the correct system call number.

37

Entities Protected: Any programs recompiled using the modified compiler on a system
that includes the kernel derandomizer.

Deployment: Can be deployed on any generic machine by modifying the OS.

Execution Overhead:

• The kernel must derandomize system call numbers, but system call dispatch already takes a
significant amount of time and one additional XOR does not have significant impact.

Memory Overhead:

• None

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

38

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: Could be combined with ASLR to increase protection.

Weaknesses: The system call table is not very large so the amount of randomness introduced is
small (can be as low as 8 bits). Additionally, if a randomized binary is leaked then an attacker can
compare that to a regular binary and discover the key, gaining the ability to forge system call numbers.
Also does not protect against return-oriented attacks because the system calls in libc will already be
correctly randomized.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Increases the effort required to inject the desired code successfully.

Availability: No code publicly available, but the concept is relatively simple and would not require
many code changes.

Additional Considerations: None

Proposed Research: As with other techniques that use XOR as an encryption function, this could
possibly benefit from hardware AES. This may be a better research opportunity because system calls
happen relatively infrequently (compared to pointer dereferences) and already require a shift to kernel
space. This means that any performance degradation will be well hidden and the problem of storing keys

39

is dealt with because they can be securely stored in kernel space. However, this solution is a partial
solution to a bigger problem. A proper memory protection against regular code injection and ROP is
required.

Funding: National Natural Science Foundation (China), Beijing Science Foundation, Nation 868
High-tech Program of China, MOE Key Laboratory of Data Engineering and Knowledge Engineering

This page intentionally left blank.

41

3. DYNAMIC SOFTWARE

3.1 SOFTWARE DIVERSITY USING DISTRIBUTED COLORING ALGORITHMS

Last Updated: 6/29/2012

Defense Category: Dynamic Software

Threat Model:

Attack Technique Mitigated: Code Injection

Details: This technique [17] reduces the number of machines an attacker can successfully
compromise in a network using code injection attacks. It does not prevent individual machines
from being compromised.

Description:

Details: This meta-technique involves taking existing code diversity techniques and
applying them across an entire network. The authors attempt to answer the following question:
assuming that an adversary must specially craft an attack for each version of a diverse executable,
and we have access to k versions of an executable, how can we place these versions on a network
so as to minimize the number of compromised machines (conversely, maximize the effort of the
attacker)? Since we are trying to minimize the number of connected machines running the same
version, this is the same as asking for an optimal k-coloring of the graph representing our
network. Unfortunately, finding the minimum number of colors needed for a perfect coloring of a
graph (such that no connected nodes are the same color) is NP-hard, as is the problem of finding
an optimal coloring using k colors. Instead, they propose a distributed heuristic approximation
algorithm that results in at most n/k links between two nodes of the same color, where n is the
number of nodes. If k ≥ n, then each node can have its own color (version of the software) and the
attacker will require a new custom attack for each node. If it is lower, then an attacker will only
be able to infect a new node at each step with probability approximately equal to 1/k. This gives
us good utility out of the diverse executables that we do have.

Entities Protected: The overall network is protected from easy compromise by an attacker.

Deployment: The approximation algorithm used for assigning versions is distributed
meaning that it must be run on every computer in the network. It could also be deployed from a
centralized server that is distributing software to the network.

42

Execution Overhead:

• None

Memory Overhead:

• None

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

(No modification is required)

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

43

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique relies on already having diversified versions of the applications
available. Other diversification techniques must be available for this technique to be useful.

Weaknesses: The proposed idea is more a planning tool than a stand-alone technique. Also even
assuming that diversity can stop large-scale attacks, this method does not stop attacks against one
machine.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: If the underlying diversity used is sound, then this technique makes it harder
for an attacker to compromise an entire network using only one attack. Depending on the number of
software versions available, he could be limited to a small portion of the network.

Availability: None, results only theoretical.

Additional Considerations: This is more a planning method that a stand-alone technique. The
results are highly theoretical.

Proposed Research: The actual impact of diversity on successful attacks must be studied and
analyzed.

Funding: National Science Foundation, Koerner Family Fellowship

44

3.2 SECURITY AGILITY FOR DYNAMIC EXECUTION ENVIRONMENTS

Last Updated: 6/29/2012

Defense Category: Dynamic Software

Threat Model:

Attack Technique Mitigated: Exploitation of Trust

Details: This technique [18] aims to mitigate system and network intrusions at a high level
by dynamically modifying security policies.

Description:

Details: The authors describe and implement a software toolkit that allows applications to
be developed around the idea of dynamically changing security policies. The main problem with
moving from static security policies to dynamic policies is that unmodified applications will not
be able to adjust to policy changes that leave them without access to crucial resources. The
authors introduce a framework for designing applications with multiple behaviors that can
transition from one to another depending on which resources (both on the same machine and on
the network) are available under the current security policy. This allows security policies to
change on the fly, in response to an actual or attempted intrusion, while maximizing the utility of
the machines and applications on the network at all times. An agile policy controller that can set
and modify the security policies over the whole network dictates the security policies on each
machine.

Entities Protected: This technique protects the network from potential intrusions and
provides a way of mitigating successful intrusions.

Deployment: This technique requires deployment on all machines in a network as well as
at least one additional policy controller.

Execution Overhead:

• Varies depending on the application; backup behaviors could be less efficient in order to get
around reduced resources of some security policies.

Memory Overhead:

• Varies depending on the application; backup behaviors could be less efficient in order to get
around reduced resources of some security policies.

45

Network Overhead:

• Varies depending on the application; backup behaviors could be less efficient in order to get
around reduced resources of some security policies.

Hardware Costs:

• Requires at least one additional policy controller machine.

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

46

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique relies crucially on a detection capability. This can be very
challenging for polymorphic type attacks [94, 95]. If the attacks are not detected, they cannot adjust the
policy.

Weaknesses: The policy manager becomes a new point of weakness since it can dynamically
change the security policies of all the other machines on a network. The authors provide a mechanism for
distributing the duty amongst several machines so that no single point of trust exists.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Makes it more difficult for an attacker to advance an intrusion due to the
network security policies reacting dynamically to his attack.

Availability: Research was done as part of a Defense Advanced Research Projects Agency
(DARPA) project, so we assume the code is available.

Additional Considerations: This work lacks many specifics. For example, how the policy is
adjusted or what impact policy adjustment has on the system. See [71] for more on dynamic policy.

Proposed Research: The actual impact of agility and policy adjustment on the security posture of a
system must be studied. Also, reliance on a perfect detection capability must be relaxed in such a system.

Funding: DARPA

3.3 PROACTIVE OBFUSCATION

Last Updated: 6/29/2012

Defense Category: Dynamic Software

47

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [19] aims to mitigate buffer overflows and other injection attacks
on network visible services.

Description:

Details: The authors use a similar technique to DieHard but in a more generalized setting.
Since control injection attacks have to be individually tailored to specific executables, this
technique creates multiple copies of each service executable, randomized differently. The
randomization used can be any of the other executable randomization techniques we have
described such as ISR, ALSR, or system call randomization. Whenever a request is issued to the
service, it is multiplexed to each of the replicas and the responses are tallied like a vote. If a
majority of the replicas agree, then the response is sent out. The idea is that any attack should
only work on one of the replicas and the others will remain uncorrupted, so a majority vote will
result in a correct response. However, it is more likely that one will be compromised and the
others will crash (due to different addresses, system calls, etc.). This means that if the system
returns a response, it will be correct with a high degree of certainty but it may not answer if a
majority of the replicas have crashed. In order to prevent an attacker from gaining some
progressive knowledge and eventually letting him compromise all the replicas at once, the system
proactively reboots replicas with new randomization. There is a controller that dispatches the
requests and tallies votes, as well as controls when replicas will be rebooted (a configurable time
limit).

Entities Protected: Protects servers.

Deployment: Can be deployed on any server with important trusted services.

Execution Overhead:

• Experimental execution overhead of 20% (differs depending on application, this estimate is
very optimistic) and latency overhead of 40%.

Memory Overhead:

• Extra memory must be used to store the multiple running replicas so an M times memory
overhead where M is the number of replicas.

Network Overhead:

• None

48

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

49

 Attack Launch

 Persistence

Interdependencies: This method does not propose a new randomization technique and relies on
existing diversification techniques.

Weaknesses: The controller that dispatches and maintains replicas is now a new target for attack,
since it is a single point of failure. Additionally, a single compromised replica can destroy it if it is not
also replicated. Also, this technique does not protect against information leakage (exfiltration) that
happens on one replica.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Makes it difficult for attackers to cause services to return incorrect results.

Availability: No publicly available code.

Additional Considerations: The technique on its own does not provide protection. It relies on
existing randomization techniques and voting.

Proposed Research: This technique ensures correct responses by voting amongst the replicas, but
it does not ensure that individual replicas cannot cause damage locally. If multiple replicas were running
on the same machine, the OS interface (system calls) could be considered as the other side of a container
holding these replicas. Every time a single replica executes a system call, if the other replicas are
uncompromised they will also issue the same system call. If one of the replicas is compromised, it must
deviate from proper behavior by calling a different series of system calls that can be detected as aberrant.
If it does not deviate, then it cannot do anything useful. Therefore, the OS could only execute system calls
if a majority of the replicas request the same system call, ignoring all others.

Funding: Air Force Office of Scientific Research, National Science Foundation, Microsoft
Corporation

3.4 PROGRAM DIFFERENTIATION

Last Updated: 6/29/2012

Defense Category: Dynamic Software

Threat Model:

Attack Techniques Mitigated: Control Injection and Code Injection

50

Details: This technique [20] mitigates buffer overflow attacks on remote services.

Description:

Details: The authors aim to design a secure mobile phone platform that is not vulnerable to
remote attack through buffer overflow exploits. They note that buffer overflow attacks can be
defended against using several different orthogonal techniques to increase effectiveness. One of
these techniques, system call randomization, is old, and two more are unique to this report.

The authors propose that, since mobile platforms are rapidly evolving, it may be useful to
consider hardware changes that could defend against buffer overflow attack. Toward this, the first
defense they propose is modifying the return instruction. The vulnerability in the return
instruction is that it returns to an address specified on the stack, which can be targeted by an
attacker. Instead, the new return address will only take an index into a table that contains the
actual return addresses. This table will be readable only by the return instruction and writable
only by the call instruction, so it will not be vulnerable to inspection or tampering. At the start of
a function call, the call instruction will insert the return address into this table with a random
unused index. It then puts this index on the stack. The return instruction loads the actual address
from the table based on the index on the stack and jumps to the specified location. The address
table is protected so that it can only be read by the return instruction and written to by the call
instruction.

The second technique the authors propose is to use instruction packing to differentiate at
the instruction set level. The way instruction packing works is it compresses frequently used
instructions together into one instruction with an Instruction Register File (IRF). This IRF stores
the instructions in an indexed table and when the program wishes to use a sequence of these
instructions it can instead call a 5-argument pack instruction with the indices of the instructions it
wishes to use. For instance, if an often used sequence of instructions is stored in the table with
indices 1–5, the program would invoke all five instructions at once with a single instruction pack5
1 2 3 4 5. If the indices of the IRF are randomized then this creates a unique instruction set for
each executable.

Entities Protected: This scheme is targeted at mobile platforms but could be used
anywhere the custom hardware was available.

Deployment: Deployed at the local machine level by modifying hardware.

Execution Overhead:

• Unknown execution overhead due to additional table lookups.

51

Memory Overhead:

• None

Network Overhead:

• None

Hardware Costs:

• Requires special hardware with the modified instruction set described.

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

52

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This method should be combined with a ROP defense.

Weaknesses: The method is vulnerable to ROP without returns since the jump instruction is not
protected.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Makes it very difficult for an attacker to inject code (since he cannot guess
the correct indices into the IRF) and impossible for an attacker to return to arbitrary locations in the code.
ROP is still possible though.

Availability: The hardware specified does not actually exist yet.

Additional Considerations: The technique is effective against traditional code injection, but the
hardware modification proposed makes it impractical for existing systems.

Proposed Research: A complete code injection and ROP protection method is an open problem.

Funding: National Science Foundation

3.5 REVERSE STACK EXECUTION IN A MULTIVARIANT EXECUTION ENVIRONMENT

Last Updated: 8/6/2012

Defense Category: Dynamic Software

Threat Model:

Attack Technique Mitigated: Code Injection

53

Details: This technique [21, 50, 52, 53, 54] detects buffer overflows on the stack and
prevents exploitation of them through stack smashing.

Description:

Details: The authors propose a very simple form of multivariant execution with two
replicas where one replica runs with the stack growing upwards and the other runs with the stack
growing down. Normally any single architecture only supports the stack growing in one direction,
but the authors introduce a compiler transformation that can create a program with an opposite
direction stack. Any buffer overflow attack that works on one would necessarily not work on the
other because the overflow would be writing over different parts of the stack. Therefore, a
divergence in behavior would signify that such an attack has occurred and the OS could detect
that and terminate the program.

Entities Protected: Any generic machine with this technique deployed in the compiler.

Deployment: Deployed on any machine by modifying the compiler and OS.

Execution Overhead:

• 100% execution overhead to run a replica.

• Experimental results show only a 3% overhead in the replica.

Memory Overhead:

• Up to 20% increased executable size.

• 100% memory overhead for an additional replica.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

54

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This method should be combined with ASLR and ROP protection techniques
for better results.

Weaknesses: A monitor is required to dispatch inputs to both replicas and to detect when their
execution diverges. This monitor is itself vulnerable to attack as it has the same weaknesses as any other
program. Additionally, there are some special cases where a buffer overflow can work on a stack in both

55

directions equally. Specifically, if a buffer overflow occurs and there is no system call between it and the
return function.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Attackers must find a weakness in the monitor or a more specific type of
buffer overflow.

Availability: No code publicly available.

Additional Considerations: It requires source code of any application to be protected. It also
requires an additional replica to be run (100% execution overhead). Similar, but more limited multi-
variant techniques have been proposed [51].

Proposed Research: An improved technique can use a similar method but without relying on
replicated execution.

Funding: Unknown

This page intentionally left blank.

57

4. DYNAMIC NETWORKS

4.1 DYNAMIC NETWORK ADDRESS TRANSLATION

Last Updated: 6/29/2012

Defense Category: Dynamic Networks

Threat Model:

Attack Techniques Mitigated: Scanning, Resource, Spoofing, and Data Leakage

Details: This technique [22, 23] assumes the hosts and entities employing this technique
are safe. It can help mitigate scanning attacks by obfuscating various parts of network packet
headers but not the payload of the packets. Depending on the placement of the obfuscator, it
could be used to combat some resource attacks like denial of service attacks. If the attacker is
sending a flood of packets, the protected packet fields would be unencrypted and produce random
values which would likely result in them not hitting the intended service. This same property
would also increase the likelihood of detecting anomalies. This technique would also increase the
difficulty of performing some spoofing attacks. It would be more difficult for an attacker to
capture some traffic and replay it back to the service because of the changing obfuscation keys
and uncertainty about how the network is currently mapped.

Description:

Details: Dynamic Network Address Translation (DYNAT) is a protocol obfuscation
technique. The idea is to randomize parts of a network packet header. This randomization can
make it more difficult to determine what is happening on a network, who is communicating with
whom, what services are being used, and where the important systems are located depending on
how the technique is deployed. Some parts that can be scrambled include the Media Access
Control (MAC) source and destination address, IP source and destination address, IP type of
service (TOS) field, Transmission Control Protocol (TCP) source and destination port, TCP
sequence numbers, TCP window size, and the User Datagram Protocol (UDP) source and
destination port. Ideally, the randomization is done with a strong cryptographic hashing scheme
or encryption. The key can be changed on a clock-based scheme or via properties in the network
such as packets sent. The key used to scramble can be generated via static means on each host, it
can be split to be partially static and partially locally or externally dynamic, or it can be fully
locally or externally dynamic.

Entities Protected: This technique aims to protect the network traffic as it is traveling
between systems.

58

Deployment: This technique can have a number of different deployment scenarios
depending on the level of protection needed. It can be deployed to workstations, servers, routers,
and gateways. This could be used to protect switched local area network (LAN) segments,
contention-based LAN segments, LAN-to-LAN connections (local router connections), Gateway-
to-Gateway connections (networks separated by the internet or long range connection), or a
combination of LAN segments and gateway connections.

Execution Overhead:

• None

Memory Overhead:

• None

Network Overhead:

• Depending on the deployment and fields obfuscated, the network overhead can be significant.
For instance, if using this on a switched network and obfuscating the MAC address, this could
cause the switches to fill up their memory and cause a lot more Address Resolution Protocol
(ARP) traffic to determine which switch port to route packets through next.

Hardware Costs:

• Additional hardware may be required to handle the routing overhead.

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

59

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: To make this technique more effective, it should be used in combination with a
packet payload encryption mechanism. Possibilities might include Secure Sockets Layer (SSL) or the IP
Security (IPSec) protocol. Another mechanism needed is a reasonably strong encryption mechanism for
the protocol obfuscation. A mechanism to generate new keys securely across all the participating systems
is also necessary.

Weaknesses: The use of other networking protocols can reduce the effectiveness of this technique.
Additional information is added to the packet headers with protocols like Multi-Protocol Label Switching
(MPLS) or using static virtual local area networks (VLANs). This additional information cannot be
obfuscated and would leak additional information about what is going on inside the network. This
technique does not do anything to change packet sizes, vary packet timing, or use dummy packets so it is
susceptible to traffic analysis. More importantly, this technique only limits reachability. For services that
can be reached from outside, this technique offers no protection.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

60

Impact on Attackers: This technique increases the workload for an attacker but does not
necessarily stop them from collecting the information they need. Traffic analysis could still be used to
profile types of traffic or the payload of the packets could be analyzed to collect information about the
network.

Availability: This was prototyped by the original authors but is not publicly released.

Additional Considerations:

• This technique can severely limit a server’s functionality because it cannot be reached from
outside.

• Depending on the placement of these obfuscators, it could have adverse effects on other
network equipment. For example, placing them behind routers or gateways may inhibit that
device’s ability to do traffic filtering.

• Depending on the fields obfuscated and the placement of the obfuscators, it could have adverse
effects on other network equipment. For example, if MAC address obfuscation is being used, it
could break port locking on switches if the MAC address is changing constantly due to
obfuscation key rotation.

• Depending on the fields obfuscated, it could have adverse effects on other network protocols.
For example, if MAC address obfuscation is being used, it could break dynamic VLANs.

Proposed Research: This technique could be expanded to harden it against traffic analysis
techniques. The obfuscators could be modified to include additional scrambling. This could include
varying the timing of packets are sent from the system, inserting extra padding into the packets to vary
packet size, and sending out dummy packets. Payload encryption is not currently a part of this technique
and it increases the effectiveness of the technique by not allowing the attacker to analyze the content of
the packets. More research would be needed to determine if there are more cases of special protocols
leaking information making this technique less effective.

Funding: Sandia

4.2 REVERE

Last Updated: 6/29/2012

Defense Category: Dynamic Networks

Threat Model:

Attack Techniques Mitigated: Resource, Spoofing, and Data Leakage

61

Details: This technique [24] can help protect against a couple of classes of attacks to some
degree. It helps protect against resource attacks like denial of service or manipulating content on
the network. The effects of denial of service attacks are mitigated by the distributed and well-
connected nature of the overlay network. An attacker would need to be able to flood potentially
many thousands of machines simultaneously. This technique helps protect against content
manipulation by using digital signatures on the content that it is distributing. This allows every
node in the network to verify the content assuming the signature has not been compromised. This
technique also helps protect against some spoofing attacks like man-in-the-middle, traffic replay,
and impersonation attacks. This would help mitigate man-in-the-middle attacks by using strong
authentication and trust relationships between each node in the network. Content replay attacks
are mitigated by dropping duplicate content at each node. Impersonation attacks are also
mitigated by the use of public key cryptography and digital signatures.

Description:

Details: Revere is a technique that involves creating an open overlay. An overlay network
is an example of a dynamic network in that it can change paths, reconfigure, and respond to links
or nodes going down dynamically. The network consists of a central distribution center that is the
root of the network and nodes, or clients, receiving the content from the distribution center. Each
node in the network can be a parent or a child. A parent can have multiple parents and multiple
children. When a new node wants to join the network, it determines the fastest parent that it can
attach to and performs a handshake with that parent to see if it will accept the new node. Once a
node has found a parent, it then seeks out other additional parents to increase its resiliency.

Security is accomplished in this overlay by the distribution center digitally signing the
content it is pushing out. Each node in the network can verify the signature of the content before
using it and passing it on to its children. If the authenticity of an item is in question, it can be
pushed back up to the node’s parents and eventually the distribution center to be verified.
Security can also exist between the parent and child nodes. Each node can support some set of
authentication methods and the child can negotiate a method with the parent. Security appliances
or authorities can also be employed for this task such as a Certificate Authority. Each node can
have its own set of rules to determine if it should trust a parent or a child when they are
negotiating.

Reliability is accomplished by the many-to-many relationships between the nodes. This
provides many paths for content to be delivered and duplicate items are dropped at a node. Each
node employs a heartbeat type message between its parents and children to determine if they are
still online. If a child does not receive a heartbeat from a parent in a certain amount of time, it will
assume that parent is gone and not use it anymore. Each parent is also capable of sending a
message to tell a child that it is no longer usable.

62

Fast delivery is accomplished by each node maintaining the fastest path back to the
distribution center. Each child has a Parent Path Vector (PPV) that is the fastest path back to the
distribution center, which includes that parent. It also maintains a Node Path Vector (NPV) that is
the fastest of the PPVs. If a parent that is part of the NPV goes down then the next fastest of the
PPVs is chosen to be the new NPV. The speed of a link can be calculated at the child by
analyzing the timestamps of the periodic heartbeat messages. The mesh-like distribution of nodes
also helps push content out quickly.

The technique was prototyped as a Java client and tested up to 3000 nodes. Their testing
showed that an update could reach all nodes in less than one second on average. They projected
that an update could reach every node on a network of one hundred million nodes in less than
four seconds.

Entities Protected: This technique protects the integrity and availability of content
delivered over a network.

Deployment: This technique would be deployed as a client on a system that wishes to
participate in the overlay.

Execution Overhead:

• None

Memory Overhead:

• None

Network Overhead:

• The control messages passed between nodes does cause extra traffic on the network.
Reconfiguration and routing can impose unknown network overheads.

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

63

 Operating System

 Hardware

 Infrastructure

(No modification is required)

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique relies on good authentication mechanisms between nodes, good
rules to determine if a node is trustworthy, and the security of the distribution centers.

Weaknesses: The security of the updates relies on the security of the distribution center. The
authors mention that there are backup private keys available to use if one is compromised but, if an

64

attacker is able to compromise one, it is not unreasonable to conclude he could compromise the backups
as well. This would allow the attacker to masquerade as the distribution center and push out fake updates,
pollute the update repositories, or do other tampering of the content. The node trust mechanism suffers
from a similar problem. If keys are being used to sign messages to determine the authenticity and
trustworthiness of a node, an attacker could have compromised a previously trusted host and use their
identity. Also more importantly, the technique is focused on protecting reachability, if the machine can be
reached from outside the overlay network, this technique does not provide any protection.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: The amount of impact this has on an attacker depends on the attacker’s
goals. If the attacker intends to poison the network with malicious or corrupted updates, then the impact is
correlated to the difficultly of compromising the distribution center and the private keys. If the attacker
were attempting to bring down the network, the increase in difficultly would be correlated to the size of
the network. The larger and more connected the network is, the more difficult it would be for an attacker
to disrupt it as a whole. However, this technique does not provide protection for individual hosts.

Availability: This technique was prototyped by the authors but is not publicly available.

Additional Considerations: Some aspects of the paper are left very vague. Having a large trusted
network or authentication between all nodes in the network is a good idea, but if the network is spread
across the world, how is setup for a new node wanting to join the network done? It discusses setting trust
rules for a node but it is not clear what such a rule would entail or how a system could determine if
another node is truly trustworthy simply by a handshake request.

Proposed Research: A dynamic network solution combined with other host protection techniques
must be explored.

Funding: Unknown

4.3 RANDOMIZED INTRUSION-TOLERANT ASYNCHRONOUS SERVICES

Last Updated: 6/29/2012

Defense Category: Dynamic Networks

Threat Model:

Attack Technique Mitigated: Resource, Exploitation of Privilege/Trust, Scanning

Details: This technique [25] is meant to impede an attacker from manipulating messages on
the network or taking a service offline. The proposed protocols allow various processes to reach

65

agreement on a message while accounting for a certain threshold of bad processes. Running
multiple instances of processes also creates more redundancy in the service.

Description:

Details: Randomized Intrusion-Tolerant Asynchronous Services (RITAS) is a technique
that builds a set of fault-tolerant consensus-based protocols on top of TCP and the IPSec protocol.
TCP provides a reliable channel and IPSec provides integrity to the data being transmitted. This
technique is to be used between a set of 𝑛	 processes. A process is considered corrupt if it does not
follow its protocol until termination. This technique can handle at most 𝑓 = !!!

!
 corrupt

processes. There are no assumptions about bounds on processing times or communication delays.
The processes are assumed to be fully connected and each pair of processes shares a secret key.

The first protocol is reliable broadcast. This protocol ensures that all correct processes
deliver the same message and, if the sender is correct, the message is delivered. The next protocol
is echo broadcast. It is a more efficient and less powerful version of the first protocol. It does not
guarantee all processes will deliver a message if the sender is corrupt. The first consensus
protocol is binary consensus. It builds upon reliable broadcast and allows processes to agree on a
binary value (either one or zero). It is the only protocol of this technique that includes
randomization if a consensus cannot be made. The next consensus protocol is multi-valued
consensus. This allows the processes to agree on arbitrary length values and builds on top of
reliable broadcast, echo broadcast, and binary consensus. The next consensus protocol is vector
consensus. It allows the processes to agree on a subset of proposed values. It builds on the
reliable broadcast and multi-valued consensus protocols. This ensures that each process decides
on the list of values of size equal to the number of processes. Each element of the list corresponds
to a process (element one of the list is the value of process one and so on). This ensures that each
element of the list is either the value proposed by that process or the default value and at least
𝑓 + 1 elements were proposed by correct processes. The final protocol is the atomic broadcast
protocol. This protocol builds on reliable broadcast and multi-valued consensus. This protocol
ensures that each message is delivered reliably and in the same order to all processes.

Using randomization, this technique implements a dynamic network that is capable of
guaranteed delivery given limited number of malicious nodes.

Entities Protected: This technique protects the information returned from a service by
ensuring a majority of the services agree on the results.

Deployment: This technique would be integrated into the code of programs that wanted to
use these new protocols.

66

Execution Overhead:

• Additional resources required to run many of the same services.

• Additional time added while the protocols are reaching agreement.

Memory Overhead:

• Additional resources required to run many of the same services.

Network Overhead:

• IPSec adds an additional 24 bytes to each packet header.

• Additional network traffic by all the broadcasting and exchanging of messages while the
protocols are reaching agreement.

• IPSec adds an average 30% latency for each protocol.

• Can have an impact on network throughput for large volumes of traffic.

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

67

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: There are limited applications that can benefit from a protocol like RITAS.
Additional protection techniques are certainly necessary.

Weaknesses: One large weakness of this technique is that is can only tolerate 𝑓 = !!!
!

compromised processes. More importantly, RITAS does not provide any protection against one-node
compromises. Attacks like data leakage (exfiltration) are still a concern.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique is only useful against integrity attacks. If an attacker were
trying to manipulate the output of programs or the data being passed around on the network, this would
increase his workload because the attacker would need to compromise a certain percentage of processes
as opposed to just one. This also adds additional impact to the attacker if he were trying to take down the
process or service. Running multiple copies provides overall greater resiliency if one or more were to fail.

Availability: This technique was prototyped by the author but the code was not publicly released.

68

Additional Considerations: This method is very limited in scope in that it deals with a particular
problem (message passing) with a protocol. Much of this work is very theoretical.

• May not work well for applications that require very low latency or streaming.

• Needs to work with applications where multiple instances would produce the same output.

• Running potentially numerous instances of a process will likely increase the maintenance
workload and overhead.

Proposed Research: This technique abstracts out what the processes are actually doing or how
they are setup. Adding randomization or diversity techniques to the individual processes or machines they
reside on would further increase the workload of the attacker assuming that such diversity did not result in
the processes producing different outputs. If all processes were running on similar systems, if an attacker
was able to compromise one, he may also be able to compromise many with similar methods degrading
the effectiveness of this technique.

Funding: European Network of Excellence, FCT (Portugal)

4.4 NETWORK ADDRESS SPACE RANDOMIZATION

Last Updated: 6/29/2012

Defense Category: Dynamic Networks

Threat Model:

Attack Technique Mitigated: Resource and Scanning

Details: This technique [26] was designed to mitigate and slow the effects of an IP address
hitlist-based worm. It does not actually stop any specific attacks. It can be used on some level to
reduce the effectiveness of scanning attacks. The information collected from these attacks would
change as the IP addresses of the systems changed.

Description:

Details: Network Address Space Randomization (NASR) is a technique that involves
changing the IP address of systems more frequently. The authors modified a Dynamic Host
Configuration Protocol (DHCP) server to have short IP address leases and to force an IP address
change when a lease expires. The side effect of changing these IP addresses constantly is that
persistent or active connections would be dropped during the address change. The authors
developed sensors to attempt to profile the services on a system and the connections on a system.
If a system has many connections that would be dropped, the changing of the address is delayed.
There is a hard limit where a system will be forced to change its IP address as well if it has not

69

changed for a long time. There are some types of systems that have constant persistent
connections that would be excluded from this technique. There are also some systems that require
a static IP address that would be excluded as well. Domain Name System (DNS) servers can be
used for outside access to servers and services to mitigate the impact a constantly changing IP
address would have on end users.

Entities Protected: This technique helps mask the identify of systems and servers from
information collection and targeted attacks.

Deployment: This technique would generally be implemented in segments of a LAN.

Execution Overhead:

• None

Memory Overhead:

• None

Network Overhead:

• Dropped connections due to IP address changes during interactions.

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

70

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique only slows down certain types of attacks but relies on other
detection mechanisms to detect these attacks.

Weaknesses: This technique does not protect systems that rely on static IP addresses or systems
that use DNS. If a system is using DNS, the attacker can just point to that address and does not have to
worry about the actual IP address. The effectiveness of this technique is also reduced if there is not a large
enough pool of IP addresses available.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This may impose some overhead on the attacker to maintain a mapping of
systems but it, by itself, does not stop an attacker from launching any attacks against a system or server.

Availability: This technique was prototyped by the authors but code was not publicly released.

71

Additional Considerations: This technique does not provide any protection against targeted
attacks or attacks that can reach the machine using higher level protocols. It also does not protect against
client-side attacks (e.g., browsing to a malicious website). The technique is very limited in scope and can
break many functionalities.

Proposed Research: This technique could be extended to have a larger pool of addresses to use for
randomization. Another idea would be to extend it to randomize network properties such as port numbers.
An external abstraction layer or proxy could be used to translate addresses coming into this network such
as a Network Address Translation (NAT) device. This would make the individual internal systems
transparent to the outside world. Combining this technique with other network technologies that manage
connections between systems could reduce the amount of dropped connections due to an address change.

Funding: European Commission\Information Society Technologies, Greek Secretariat for Research
and Technology

4.5 MUTABLE NETWORK

Last Updated: 6/29/2012

Defense Category: Dynamic Networks

Threat Model:

Attack Techniques Mitigated: Resource and Scanning

Details: In this technique [27], the shifting IP addresses would make it more difficult for an
attacker launching denial of service type attacks against individual systems in the network. The
shifting IP addresses, port numbers, and packet routes would also make it more difficult for an
attacker running scans on the network trying to identify what systems are there as well as the
services running on those systems.

Description:

Details: A Mutable Network (MUTE) is a technique that involves changing IP addresses,
port numbers, and routes to destinations inside of a network. This technique is proposed to be
implemented as a sort of virtual overlay to the existing network so the original IP address and
information on the systems never changes. All traffic is routed independently over this virtual
overlay. Synchronization of IP address information across the network would be done across
encrypted channels. There would also be mechanisms in place to apply transformations on the
network traffic to confuse the tools attackers are using to identify the services and hosts. The
packets can be changed based on rules distributed amongst routing entities. It can change the
source and destination IP address as well as source and destination ports. There is a sense of
possible network configurations so packets can be rerouted to get to their destination via a

72

different path. There would also be policies in place to ensure any global network requirements
are satisfied.

Entities Protected: This technique helps mask the identities of systems inside of a
network. By changing the information associated with systems, information collected by attackers
would be constantly shifting.

Deployment: This would be deployed on all devices capable of routing network traffic and
wish to participate in this technique.

Execution Overhead:

• None

Memory Overhead:

• None

Network Overhead:

• There may be unknown, but significant overload of network infrastructure including routers
and switches.

• The extra routing overhead may break the network infrastructure.

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

73

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique can be combined with other network-based detection and
monitoring systems.

Weaknesses: One potential weakness of this technique would be if an attacker could still attack the
original IP address of the machine since it does not change. Another possible weakness is if the IP address
information does not change fast enough. An attacker could do enough reconnaissance to figure out what
they need then launch their attack before the change happens. In addition, if any systems are using a DNS
address, this will be updated with the IP addresses and an attacker could target a machine via that address.
More importantly, this technique only protects reachability. It does not provide any protection against
client-side attacks (e.g., browsing to a malicious website).

74

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique could have varying levels of impact on an attacker depending
on what the attacker is trying to accomplish. If an attacker is trying to disrupt the network, it could make
flooding attacks more difficult if they did not have access to DNS addresses. Since this technique is not
supposed to disrupt active connections, if an attacker can collect the information they need before a
switch and establish a connection to the system, they may not be as impacted as much by this technique.

Availability: This is a research idea and was not implemented.

Additional Considerations: A technique like this could have impact on applications or services
that require constant connections or could disrupt current connections. More importantly, the protection
offered is very limited. It does not protect against client-side attacks. The technique can also have severe
scalability issues.

Proposed Research: Since this is a proposed idea, many aspects are still undefined. It is not clear
how the technique could be put in place such that it would not affect active connections or running
services. It is also not clear how to handle adding or removing systems from this network or how far it
would scale. It must also come up with a way to be fast enough to impact attackers while not overloading
the systems or network with the changes. Finally, how this needs to be implemented into a system would
need to be investigated as well. It is not clear how the underlying actual network is protected if at all. If an
attacker is still able to get in through the original network that does not change, then it defeats the purpose
of this technique.

Funding: Unknown

4.6 DYNAMIC BACKBONE

Last Updated: 6/29/2012

Defense Category: Dynamic Networks

Threat Model:

Attack Technique Mitigated: Resource

Details: This technique [28] is designed to mitigate a specific type of resource attack
known as denial of service. It does this by dynamically rerouting network traffic away from
virtual overlay networks that are being flooded.

75

Description:

Details: Dynamic Backbone (DynaBone) is a technique that involves creating multiple
inner virtual overlay networks inside of a larger outer virtual overlay network. Each of the inner
networks can be using a different networking and routing protocol or hosting a different service
to increase diversity amongst them. Each host in the outer overlay network is not aware of the
inner networks giving the appearance of only one network. The entry points to these internal
overlays have a collection of sensors that monitor performance and possible attack traffic. Based
on the conditions of the networks, it decides which internal network to use. If an internal overlay
is detected to be under attack or is suffering performance issues, traffic can be routed through
different overlays (dynamic network aspect of DynaBone). This technique is built on top of X-
Bone that is a dynamic network overlay technique that allows multiple simultaneous virtual
overlays to coexist. It allows network topologies to be dynamically created and used by
applications. Hosts and networking devices can participate in multiple overlays. This can also be
setup so various physical paths in the network are unique to different overlays.

Entities Protected: This technique aims to protect the availability of services on a network.
Traffic can be dynamically rerouted or routed through multiple paths simultaneously.

Deployment: This would be deployed on all entities participating in the virtual network.

Execution Overhead:

• None

Memory Overhead:

• None

Network Overhead:

• Depending on the various networking and routing protocols that are being deployed with this
technique, they can add additional latency and reduce bandwidth. These can include encryption
and authentication protocols/algorithms.

• The impact of additional routing and load on the network infrastructure is unknown.

Hardware Costs:

• None

Modification Costs:

 Data

76

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: A good detection mechanism to detect when an overlay is under attack. This
technique assumes that attacks can be detected.

77

Weaknesses: The inner overlays may not be sufficiently disjoint and it could be the case that the
loss of certain hosts/networking devices/routes can severely affect the overall network. If the service is
not distributed, it is also possible for an attacker to take the service out by flooding the service provider.
Also this technique does not provide any protection against targeted attacks or data leakage (exfiltration)
attacks. This technique does not provide any protection against client-side attacks.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique has varying levels of impact on an attacker depending on the
goals of the attacker. If an attacker is trying to take down a service by flooding hosts or network
infrastructure, this technique could make it more difficult for him. If an attacker were attempting to take
out a service via other means such as attacking the service directly, this technique would be less effective.

Availability: This technique was prototyped by the authors but the code was not publicly released.

Additional Considerations: This technique is limited in the protection it provides. It does not
provide any protection after a host is reached. More importantly, it does not protect against client-side
attacks. In addition, this technique can severely impact functionality by limiting communication.

Proposed Research: One idea for this technique is go combine it with techniques that also increase
the resiliency of the end service as well. This could include techniques that run multiple instances of a
service. This would increase the overall availability of the service by making it more difficult for the
attack to disrupt the network and the end service.

Funding: DARPA, Air Force Research Laboratory

4.7 ACTIVE REPOSITIONING IN CYBERSPACE FOR SYNCHRONIZED EVASION

Last Updated: 6/29/2012

Defense Category: Dynamic Networks

Threat Model:

Attack Techniques Mitigated: Scanning and Resource

Details: This technique [29] helps mitigate scanning related attacks by continually
changing IP addresses. Hopping makes the life of the collected information limited. This
technique would also help mitigate some resource attacks related to denial of service (DoS)
attacks. It is presumed that the gateways do not have a global DNS address so an attacker would
need to target a large set of IP addresses simultaneously or constantly change the target for a DoS
attack to reach the target.

78

Description:

Details: Active Repositioning in Cyberspace for Synchronized Evasion (ARCSYNE) is an
IP address hopping technique implemented at VPN gateways. The functionality is implemented
into the kernel of the gateway OS. Each gateway participating in the hopping shares a secret and a
clocking mechanism. At each clock tick, the gateways compute a new IP address based on the
secret and the clock. Each gateway also computes what the other gateway IP addresses will
become. The IP hopping does not disrupt connections between gateways including streaming
services. In order to account for packets that are delivered shortly after an IP address change, the
gateways can still accept those packets up to a grace period. This grace period should be
approximately equal to the time it takes for one packet to go from one gateway to another. This
technique has been tested with a large number of standard network protocols and services.

Entities Protected: This technique aims to protect the discoverability and reachability of
the VPN gateways between networks. The presumptions is that if an attacker cannot locate and
reach a gateway before the IP hopping takes place, he will not be able to launch an effective
attack against that gateway or the systems behind that gateway.

Deployment: This technique would be deployed on the VPN gateways in a network.
Clients that are operating within this private network should not need to be modified.

Execution Overhead:

• None

Memory Overhead:

• None

Network Overhead:

• Changing the address information in packets may have an impact on the delivery times.

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

79

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: The method for deriving and delivering the shared secret is secure.

Weaknesses: One weakness of this technique would be having an insufficiently large pool of IP
addresses to use for hopping. If the pool is too small, an attacker could focus more on the limited
addresses or be able to predict which addresses will be next with better accuracy. In addition, this would
give an attacker with adequate resources the ability to launch DoS type attacks against the entire limited
address space cutting off communication at that gateway. If it is possible for an address to be chosen

80

twice or more in a row due to the random selection, it might give an attacker larger windows to mount an
attack. If the systems that are part of the VPN are also part of a local network, it may be possible for an
attacker to compromise a system within that local network then launch an attack on the systems that are
part of the VPN directly. This technique is also not effective if an attacker is able to locate the target and
mount an attack before the hopping takes place. If an attacker can analyze traffic, he may be able to use
other aspects of the network traffic besides the address to determine where the current targets are located.
In fact, the protection offered by this technique is only based on limited reachability. For example, this
technique provides no protection against client-side attacks (e.g., browsing to a malicious website).

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique increases the amount of work an attacker has to do to
discover the targets if he is using IP scans. An attacker would need to scan random IP addresses in order
to discover target that is constantly changing addresses as opposed to scanning for a fixed host then
mounting an attack. However, this technique does not provide any protection against an adversary that
can reach a host using higher-level protocol information (web browsing or application-level
communication).

Availability: This technique is being prototyped and tested by the Air Force Research Laboratory
as a proof-of-concept but does not appear to be publicly available at this time.

A similar commercial product is available from Invicta: http://www.invictanetworks.net/. Another
similar commercial product is available from Telecordia: http://www.telcordia.com.

Additional Considerations: The protection only focuses on masking IP addresses. Note that a host
can be reached by many other means: browsing to a website, application-level communication, peer-to-
peer (P2P) traffic, etc. The limitations imposed by the technique and the functionality impacts may
outweigh the protection offered.

Proposed Research: This technique might offer more protection if it was implemented on
individual systems as opposed to at the gateways. This would help protect against any scanning or attacks
that are targeting the participants in the VPNs directly. Additional randomization of protocol fields or the
inclusion of dummy traffic might also offer more protection for attackers that are able to perform traffic
analysis. However, implementing at the level of individual hosts significantly increases the overhead.

Funding: Air Force Research Laboratory

81

5. DYNAMIC PLATFORMS

5.1 SECURITY AGILITY TOOLKIT

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Techniques Mitigated: Exploitation of Trust

Details: This technique [30] helps mitigate the damage that can be done on a system by
restricting the access an application or process currently holds in the event of attack detection. It
can restrict high-level access like read/write permissions to a file as well as low-level access such
as system calls. It also has the ability to restrict external connections.

Description:

Details: This technique provides a toolkit to wrap around executables. It allows the
injection of greater access control mechanisms with the ability to change them during program
runtime. The toolkit is meant to supplement general intrusion detection system (IDS) frameworks.
The idea is that if a detection of a certain threat or activity is encountered, the dynamic security
policy of the affected applications can be dynamically changed. It could increase auditing, isolate
affected processes, or even take measures like killing certain programs. There is an Agility
Authority on each host that manages the agile processes for that host. Above that, an Agility
Authority Manager distributes policy updates to each Agility Authority. The IDS can either send
response directives directly to each Agility Authority or to the Agility Authority Manager. After a
response directive is received, the policy is adjusted accordingly and actions are taken according
to those new policies to mitigate the threat.

Entities Protected: This technique protects the OS when suspicious activity or threats are
detected.

Deployment: This technique could be implemented into the OS at the kernel level to
enable functionality to wrap around existing executables.

Execution Overhead:

• Will incur some unknown overhead while checking for policy updates and applying policy
checks.

82

Memory Overhead:

• Will incur some unknown overhead by injecting the policy code into the running program.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

83

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique relies on a framework that includes IDS, event analyzers, and
response units to trigger policy changes. If the attack cannot be detected, this framework does not work.

Weaknesses: A potential weakness is the reliance on a separate detection mechanism. A stealthy
attacker could avoid detection and carry out their attack without extra hindrance. An attacker could also
potentially use the policies to cause a denial of service to the system by intentionally triggering the strict
policies. This technique does not provide any protection against the first attack. It can only adjust the
policy afterwards.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Depending on how this was implemented, it may have some impact on the
attackers. If the policies were implemented in a strict fashion as the starting policy, it could limit what the
attacker could do to a system after compromising an application. If the attacker is detected, it could make
it more difficult accomplish their task if they had not completed it before being detected.

Availability: This technique was prototyped by the authors but is not publicly released.

Additional Considerations: This work lacks many specifics. The technique relies on an external
detection mechanism, so the effectiveness of this technique relies on the effectiveness of that mechanism.
Since there is no perfect detection mechanism, this could significantly decrease the effectiveness of this
technique. Also, the technique does not provide any protection against the first attack. It only relies on
limiting damage afterwards. Moreover, policy changes can break applications and functionality.

Proposed Research: A possible future direction for this technique would be to make it more
integrated with a detection mechanism. This would make the technique less reliant on external triggering
mechanisms. Combining this technique with other movement techniques would increase the overall
effectiveness of this method. If other techniques or guards are able to detect more specific types of

84

attacks, that could be implemented as another triggering source for this technique. It is also crucial to
understand the impact of policy changes and their effectiveness in stopping an attack.

Funding: DARPA

5.2 GENESIS

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [31] defends against different threats depending on how it is
implemented. If it is implemented with ISR, it can defend against code injection attacks. If it is
implemented with calling sequence diversity (CSD), it can partially mitigate attacks that divert
the control flow of a program. It can protect against attacks that target function calls that exist
before the program is loaded but not function calls that are generated during runtime.

Description:

Details: This technique involves applying runtime software transformations to a program.
The program is run in an application-level VM called Strata. Strata with software dynamic
translation can change a program by injecting new code, modifying existing code, or controlling
program execution in some manner. Strata examines and translates all program instructions
before they execute on the host processor. Two transformation methods were prototyped to test
this technique.

The first method involves CSD. The method involves modifying the compiler to insert
annotations into the code whenever there is a static control flow switch. It will XOR three keys
each time this switch is made and will be compared to an expected key to verify it was a valid
switch. The first key is generated at load time and is not accessible by or stored in the running
program. The second and third keys are the source and destination keys. If an unexpected jump or
control flow diversion is interested, Strata will dynamically generate the key check.

The second method involves modifying the linker to allow Strata to use ISR. This method
uses 128-bit AES encryption instead of XOR. The linker marks all application and library code as
encryptable, appends a tag to each instruction, and adds padding as necessary to properly align
the blocks for AES encryption. Strata will encrypt the application when it loads and decrypts the
instructions as they are needed for execution. It will then check the instructions for the proper tag.
If the instruction is valid, it will remove the tag and add it to a cache to decrease decryption costs.

85

Entities Protected: This technique helps protect the OS by making applications more
difficult to exploit.

Deployment: The Strata VM is deployed as a standalone application on the system and
does not require modifying the OS. In order to use the methods of diversity discussed in the
report, the compiler and linker on the system would also need to be modified to support each
diversification method.

Execution Overhead:

• The ISR method adds about a 17% increase in overhead against the SPEC CPU2000
Benchmarks.

• The CSD method adds an average 54% increase in overhead against the SPEC CPU2000
Benchmarks.

• The emulation layer (Strata) can impose significant execution overhead.

Memory Overhead:

• Some additional memory will be required for the Strata VM and any keys or instructions it
needs to store.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

86

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique relies on an emulation layer (Strata).

Weaknesses: This technique relies on the security and integrity of the VM. It assumes there is no
way for an attacker to disable protections on the VM’s memory sections and the VM implementation is
sufficiently bug-free. The authors claim to protect the system calls that could disable these protections but
a method may exist to disable those protections indirectly. In addition, this technique does not provide
any protection against ROP attacks. This technique is also weak against memory secrecy violations.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

87

Impact on Attackers: Both methods used in this technique will increase the amount of work
needed to exploit the application. In both cases, more advanced control injection attacks, such as ROP,
could be used to bypass these protections.

Availability: This technique was prototyped by the authors but is not publicly released.

Additional Considerations: The ISR method breaks self-modifying code and just-in-time
compilers (e.g., Java). Running every application on top of an emulation layer can have significant
execution overhead, which makes this technique impractical.

Proposed Research: A future research direction for this technique might be investigating methods
to increase the protection provided by the CSD method. A larger direction might be combining this
technique with an N-version programming technique. This would increase the overall difficulty in
exploiting the application because now the attacker has to break multiple diversifications with one input.
An efficient protection against code injection and ROP is an open problem.

Funding: DARPA

5.3 MULTIVARIANT EXECUTION

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Technique Mitigated: Code Injection

Details: This technique [32] combats code injection attacks by having each running variant
use a different system call mapping and unpredictable stack direction. Each variant uses the same
input making it difficult to inject code that will work with all mappings simultaneously. The stack
direction change will result in a different flow of instructions in the program and libraries as well
as providing different library entry points between the variants.

Description:

Details: This technique involves running multiple variations of the same program. A
separate monitoring program monitors all variations. The level of monitoring can vary from each
program having the same result down to checking each instruction executed. This technique
focuses on synchronizing all variants at the system call level and each variant should make the
exact same system calls. If any inconsistency is detected, all variants are terminated and restarted.
The monitor is implemented as a user-space, unprivileged program. It monitors the arguments of
system calls and all communication between the variants as well as interactions with the kernel.

88

There are some system calls that must be executed by the monitor on behalf of the variants to
keep them synchronized. These would include system calls that change the state of the system or
return volatile results. In this case, the results of the system call are passed to the variants.
Variants are automatically generated by modifying the stack growth direction and system call
number mapping but the technique is capable of any variation technique as long as the system call
invocations are the same.

Entities Protected: This technique protects the OS by making the exploitation of an
application more difficult.

Deployment: The monitor and variants are implemented as standalone applications running
on a system. The variants are generated by using a modified compiler and modified system
libraries.

Execution Overhead:

• Number of variants + monitor overhead.

• Additional time added for variant synchronization and communications.

• Average monitor overhead of ~17% with two variants.

• Average monitor overhead of ~30% with three variants.

• Average monitor overhead of ~37% with four variants.

Memory Overhead:

• Number of variants + monitor overhead.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

89

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique requires a good source of randomness for the system call
number randomization. This technique will not work with variants that cause a program to produce
differing sequences of system calls.

Weaknesses: The actual dependency of attacks on the variants is unknown. This technique does not
stop attacks against higher-level protocols. The multivariant monitor can be compromised specifically as
it is in the “untrusted” zone. For example, the monitor can falsely indicate that the variants agree on a

90

result. In addition, this technique is focused on integrity attacks and it does not protect against data
leakage (exfiltration) attacks against one of the variants. The granularity of detection is also limited to
system calls. Modifications to the user space code that keeps system calls intact remain undetected.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique increases the difficulty of exploiting an application. It
requires the attacker to provide input to a program that will simultaneously break all running variants. The
impact will be different depending on the diversification method used on the variants. Some
diversification techniques include stack reversal, instruction set randomization, heap layout
randomization, stack base randomization, variable reordering, system call number randomization, register
randomization, library entry point randomization, stack frame padding, code sequence randomization,
equivalent instructions, program base address randomization, program section reordering, and program
function reordering.

Availability: This technique was prototyped by the authors but is not publicly released.

Additional Considerations: The technique has significant overhead, as it requires many variants.
It, however, does not protect against the compromise of one variant. The actual impact of diversity on the
attacks is unknown. This technique also lacks many important specifics (types of diversity applied and its
impact).

Proposed Research: It may be possible to compose some techniques while still preserving the
required properties of this technique. It would be worthwhile to explore which methods can be composed
together in a manner that does not cause unintentional divergences or false detections. More specifics are
needed for a technique like this.

Funding: Air Force Research Laboratory

5.4 DIVERSITY THROUGH MACHINE DESCRIPTIONS

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Technique Mitigated: Code Injection

91

Details: This technique [33] is meant to mitigate mass code injection attacks. Each system
would potentially need their own custom exploit to work because of all the varying system
modifications and configurations.

Description:

Details: This technique involves using a VM and compiler machine descriptions to create a
diverse set of architectures. This will regenerate all the machine-dependent and architecture
dependent parts of a complete OS. Various items can be changed in these machine descriptions
including the following:

• differing size of operations with different instruction sets and instruction encoding

• different number of registers

• different machine byte and word sizes

• different endiannesses

• different representation of signed integers

• different stack directions

• using one or multiple stacks

• different calling conventions such as alignment, ordering, padding, registerization,
stack adjustment, and return value handing

• alignment padding in stack frames and data structures

The kernel would be able to have changes such as different sizes of standard types and
linker relocation codes. These machine descriptions could be randomly generated. These
architectures could be periodically applied to one machine or across many machines.

Entities Protected: This technique protects the OS as a whole.

Deployment: This technique is deployed inside of a VM and is composed of an entire
system.

Execution Overhead:

• Some overhead imposed by running inside a VM.

92

Memory Overhead:

• None

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

93

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique relies on a virtualization layer. It also require a diversification
layer to create the variants.

Weaknesses: The technique does not protect against application-level attacks. It does not protect
against ROP attacks either. The virtualization layer is also a single point of failure and can be attacked. In
addition, the technique does not provide any protection against targeted attacks on one platform.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique would increase the amount of work an attacker would have
to do to attack a large number of systems. An attacker may still be able to leverage non-code injection
attacks against these systems that work across multiple architectures.

Availability: This is a research idea proposed by the author and has not been implemented.

Additional Considerations: This technique is theoretical and lacks many specifics. Constant
recompilation of the entire OS could impose a large operational overhead. In addition, changing so many
aspects of a system could potentially have unforeseen adverse effects on applications and can break
functionality. Implementing this technique can be very difficult. See a discussion on diversity in [68, 69].

Proposed Research: A possible research direction for this technique might be coming up with a
way to better automate this process. It may also be worthwhile to investigate potential side effects of
changing so many parts of the architecture. This idea might be able to be expanded to mix in different
versions of libraries and base OSs as well.

If a technique like this could be reasonably automated (see [70]) and any side effects of architecture
randomization explored, a larger future direction could be combining this with a technique like Trusted
dynAmic Logical hEterogeNeity sysTem (TALENT). This would allow for a large space of platforms to
be dynamically generated or periodically regenerated.

94

The impact of different types of diversity on attacks has to be studied.

Funding: Unknown

5.5 N-VARIANT SYSTEMS

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [34] can be implemented with different application variants to
target specific threats. The instruction set tagging variant gives each running variant their own
instruction set. Since each variant is passed the same input, this will help mitigate code injection
attacks because the attack might succeed on one variant but would presumably fail on another.
The monitor would catch this divergence and restart the variants. Address space partitioning is
the second type of variant used in this technique. This variant will help mitigate control injection
attacks because each variant is mapped to a separate location in memory. This will only help
mitigate control flow attacks that rely on fixed addresses. Attacks that know the relative location
of their target can still succeed.

Description:

Details: The idea behind this technique is to run multiple variants of the same application
simultaneously without relying on anything to be secret. It contains a polygrapher, the application
variants, and the monitor. The polygrapher takes input and passes it to all the variants. The
monitor watches the variants for a divergence and, if one occurs, restarts all the variants in a
known good state.

This technique relies on a couple properties to work correctly. The first property is a normal
equivalence that says when a variant is in a normal state, that state should be equivalent to a state
in the unmodified, original process. The second property is a detection property that says certain
attacks should be detected as long as the normal equivalence is satisfied. If a variant enters a
compromised state then another variant should enter an alarm state or anomalous state that is
detectable by the monitor.

The proof-of-concept was built into the Linux kernel and tested with two types of variants.
The monitor synchronizes the variants at the system call level. System call wrappers are created
so system calls can be shared between variants. System calls are broken into three categories:
shared, reflective, and dangerous. Shared system calls interact with external state, reflective

95

system calls observe or modify properties of a process, and dangerous system calls can break the
assumptions of the technique.

The first variant tested was the address space partitioning. This utilizes the linker to load
the data and code sections of the program at sufficiently different addresses while ensuring they
will not overlap. The second variant tested was instruction set tagging. This utilizes a binary
rewriter to insert a tag into each instruction and software dynamic translators to interpret these
instructions during execution. Each variant would use different tags.

Entities Protected: This technique protects the OS by making the exploitation of an
application more difficult.

Deployment: This technique is built into the OS and wrappers are created for some system
calls.

Execution Overhead:

• N times slow down for N variants plus additional overheads as follows.

• 2 Variants with Address Partitioning: Unsaturated Server: 17.6% Increase, Saturated Server:
48% Increase.

• 2 Variants with Instruction Tagging: Unsaturated Server: 28% Increase, Saturated Server: 37%
Increase.

• CPU-bound services will have a high overhead because each variant will duplicate
computations.

Memory Overhead:

• Number of variants + monitor + polygrapher overhead.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

96

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique can only be used with diversification techniques that use
variants similar enough to satisfy the normal equivalence property. It also relies on separate
diversification techniques.

97

Weaknesses: This technique does not protect against application-level attacks. Also, the monitor
can be a single point of failure. In addition, the technique does not provide any protection against ROP
attacks and memory secrecy violations. It does not provide any protection against data leakage attacks on
one variant either.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique increases the difficulty of exploiting an application. It
requires the attacker to provide input to a program that will simultaneously break all running variants. The
impact will be different depending on the diversification method used on the variants.

Availability: This technique has been implemented by the authors and is available at
http://www.nvariant.org.

Additional Considerations: The technique lacks many specifics and the actual diversification
techniques and their impacts are unknown. Also the technique kills programs that use the execve (execute
program) or unrestricted mmap (map file into memory) system calls. Operating System Signals may
cause the variants to diverge because variants might be in slightly different states when they receive the
signal (this restricts the functionality of the technique). Variants using user-level threading may cause
false detections because of the difference in thread interleaving causing different sequences of system
calls. This could also potentially allow an attacker to exploit race conditions. Various non-attack inputs
can cause false detections making this prototype less feasible for real services. In addition, running many
variants may be impractical.

Proposed Research: A future direction for this technique would be to explore additional variant
diversification methods. This technique could also be enhanced to work with more system calls and OS
components like other similar techniques. The impact of diversification techniques on attacks must also
be studied.

On a larger scale, it may also be possible to compose some techniques while still preserving the
required properties of this technique. It would be worthwhile to explore the space of diversification
methods and determining which methods can be composed together in a manner that does not cause
unintentional divergences or false detections. Some diversification techniques include stack reversal,
instruction set randomization, heap layout randomization, stack base randomization, variable reordering,
system call number randomization, register randomization, library entry point randomization, stack frame
padding, code sequence randomization, equivalent instructions, program base address randomization,
program section reordering and program function reordering.

Funding: DARPA, National Science Foundation

98

5.6 TRUSTED DYNAMIC LOGICAL HETEROGENEITY SYSTEM

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Techniques Mitigated: Code Injection, Control Injection, Scanning, and Supply
Chain

Details: This technique [35] can help mitigate a OS and architecture dependent attacks.
Since the application is migrating between systems with different libraries, architectures, and
layouts, it is more difficult to construct exploits that will work under every platform. The attacker
also may not be able to predict when the application will migrate or which platform the
application is currently running on. The fact that the application can be constantly moving makes
passively scanning and collecting information less useful. Changing hardware platforms also
makes supply chain attacks more difficult.

Description:

Details: The Trusted dynAmic Logical hEterogeNeity sysTem (TALENT) is a technique
that involves making a running application migrate between different platforms (OS and CPU
architecture) while preserving the state of that application. This state can include any files the
program was using or sockets the program had open. These platforms have hosts with virtual
containers. Each can be implemented with a different OS, different hardware, a different
architecture, and different versions of libraries. The application being preserved is precompiled
for each platform. TALENT needs compiler support to create checkpoints and containers to
preserve the environment.

The current implementation uses Linux and BSD platforms. A centralized controller
manages the migrations. The migrations can currently trigger at random intervals or via manual
interaction.

Entities Protected: This technique protects the OS and applications running on it by
continually shifting the attack surface.

Deployment: This technique is deployed across multiple systems. A special compiler
allows a program to be periodically checkpointed. The source code of the program needs to be
modified to be able to support the checkpointing.

99

Execution Overhead:

• Minimal overhead imposed by the checkpointing mechanism.

• A few seconds of downtime during migration.

Memory Overhead:

• None

Network Overhead:

• The state of the programs will be transferred between machines.

• Control messages passed between the platforms.

Hardware Costs:

• A system capable of a virtual infrastructure or additional machines to host each platform.

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

100

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This technique relies on a detection mechanism for effective jumping if it is
not using a random jumping scheme.

Weaknesses: There are a couple ways this technique could be less effective. If the platforms do not
migrate fast enough, the attacker may be able to get an exploit together and attack the current machine.
The technique does not provide any protection against higher-level protocol attacks. It also does not
protect against attacks on one machine.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique would slow down an attack and make it more difficult for
them to exploit the machines but it would not stop them completely. An attacker still has the chance of
exploiting a system and achieving their goal before the application migrates. An attacker could also try to
leverage more advanced Control Injection attacks that could work across numerous systems.

Availability: This technique has been prototyped by the authors and is available as a government
off-the-shelf (GOTS) product.

Additional Considerations: Using this technique on every application can impose a very high
overhead. It must be used to protect only a selected set of important applications.

101

Proposed Research: There are a number of future directions this technique could investigate. One
direction would be implementing a recovery mechanism. This would allow the technique to clean up and
recover from attacks. Another future direction would be adding data integrity checks. Currently, the
technique has no integrity guarantees. Finally, another direction would be creating a distributed command
and control mechanism to eliminate the single point of failure.

A possible direction in the future may be to combine this technique with a cloud concept to have a
large and dynamic set of platforms to choose from at all times. This would make it less predictable which
platforms would be in the migration sequence.

The impact of OS and architecture diversity on attacks must also be studied.

Funding: Air Force

5.7 INTRUSION TOLERANCE FOR MISSION-CRITICAL SERVICES

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Technique Mitigated: Resource

Details: This technique [36] combats resource attacks such as DoS and data integrity
attacks. It mitigates the impact of DoS attacks by trying to ensure there are enough resources on a
platform to run the service. It will terminate noncritical services to free up resources. If not
enough resources can be freed, it will change to a different platform. This technique mitigates
data integrity attacks by implementing a voting scheme for the service results.

Description:

Details: This technique aims to make critical web services more survivable in the face of
attack. This is composed of a frontend that accepts requests from clients, some number of diverse
platforms serving the same service, and a surveillance node that monitors the platforms and deals
with voting. The platforms can have different OSs and different web servers to vary their attack
surface.

Each platform implements a resource reallocation method that monitors the system. It is
composed of a resource reallocation manager, health monitor thread, and survivability evaluation
thread. The health monitor collects performance information from the OS and forwards that
information to the survivability thread. This thread determines if resources need to be changed
based on the performance. If resources need to be adjusted, the resource manager will start to

102

terminate non-critical services to free up additional resources. If not enough resources can be
freed to ensure acceptable performance, the platform is taken offline for recovery.

Each platform also has a result acceptance tester. This component tests the logical
reasonableness of the result and the execution time required to obtain that result. The platforms
can operate in two modes. There is an active mode where a set of active nodes process a request
simultaneously and the result is voted on and processed by the surveillance node. There is also a
passive mode where only one platform is active. If that platform does not pass the acceptance test,
it is replaced by another platform and recovery is performed on it.

Entities Protected: This technique protects specific applications and services to ensure
they continue to operate under attack.

Deployment: This technique would be deployed in the overall network infrastructure.

Execution Overhead:

• Up to an additional 50% time may be needed to process a request.

Memory Overhead:

• None

Network Overhead:

• Additional out-of-band network needed for surveillance.

Hardware Costs:

• Additional platforms to host the additional variants.

• Additional network infrastructure to support this platform configuration.

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

103

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: The system relies on a detection capability that monitors the resources.

Weaknesses: This technique assumes that only one active platform will be compromised at any
given execution cycle. The voting mechanism would see this as a valid result and it could compromise the
integrity of this technique. Also this technique does not stop any attack. It just tries to mitigate DoS
attacks by resource management. In addition, data leakage attacks or low-observable attacks are not
mitigated.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

104

Impact on Attackers: This technique would make it more difficult for an attacker that is trying to
deny service. This technique might not slow down an attacker with a different goal. An attacker could still
carry out other attacks that take advantage of the voting system or exploit the system at a lower level.

Availability: This technique was prototyped by the authors but is not publicly available

Additional Considerations: This technique provides no additional protection. It just mitigates the
impact of certain types of attacks. Also the technique lacks specifics. For example, it is unclear what types
of resources are monitored. What happens to obscure resources that can run out (e.g., file descriptors or
certain ID numbers)? A similar technique is proposed in [67].

Proposed Research: A possible enhancement to this technique would be to make the voting system
more difficult to bypass. Currently, only two results need to match for a result to be accepted. This could
be expanded to more systems.

A larger direction for this technique would be to combine this technique with other movement
techniques on the platforms. This would increase the diversity between each platform and make the
platforms resistant to a larger set of attacks.

Also a study must be conducted to enumerate all possible resources that can be attacked in a
machine during a DoS attack.

Funding: University IT Research Center Project, University of Incheon, Korea Information
Security Agency Research Project

5.8 GENERIC INTRUSION-TOLERANT ARCHITECTURES FOR WEB SERVERS

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Techniques Mitigated: Code Injection, Control Injection, and Scanning

Details: This technique [37] helps reduce the attack surface [45] of the services by not
making them directly accessible from the outside, limiting the types of traffic that can reach it,
and running on multiple diverse systems. Each request can use a different subset of diversified
servers and the results are voted on making it more difficult for one attack to be universal. The
servers are also hidden behind the firewall and proxies making information collection attacks
more difficult as well.

105

Description:

Details: This technique aims to be a system capable of diagnosing issues, repairing itself,
and reconfiguring itself in order to continue to provide a service in the event of attack. It consists
of a firewall in the front that filters all traffic except http traffic. The traffic that gets through is
fed to a network of proxy servers. These proxy servers communicate with the web servers. Each
web server is a diversified system containing various architectures, OSs, and software packages
while providing the same content. The proxy systems are diversified in a similar manner but have
been hardened to be further resistant to attack.

The proxy servers have the ability to take on differing roles. The proxy servers choose a
leader and this leader handles all requests from the firewall. It is responsible for determining
which subset of web servers should be used to process the client request. A different number of
web servers can be chosen to process the request based upon how critical the service is or the
current alert level of the system. It will also be responsible for making sure everything is load
balanced so some servers are not overworked. One of the proxy servers is also chosen as an
adjudicator that manages connections to the shared database if one is needed. It has the ability to
filter out any suspicious looking SQL queries. Each proxy is capable of taking on one of these
roles if something happens to the existing elected proxy. Each proxy also has an alert manager on
it. Each proxy and server can be in a trustworthy state, a suspected state, or a corrupted state. The
alert managers help decide what action should be taken in the event of an alert from any detection
mechanism (described later). When something receives an alert, a vote is taken amongst the
proxies to verify alert. An action is then taken depending on the role of the corrupted component.
Each proxy is in a different administration domain to prevent one administrator from taking over
all proxies. The leader proxy also has the ability to filter out any suspicious looking http requests.

This technique incorporates a number of different detection mechanisms. The first is an
agreement protocol. This is a voting mechanism to determine if a server was corrupted. Each
server processing the request sends a cryptographic hash of the response excluding the header
back to the current leader. The majority response is then used to be sent back to the client. The
proxies use this same voting protocol when an anomaly is detected in any of the systems to come
to a consensus on a countermeasure. The adjudicator proxy uses this protocol to verify SQL
queries before executing them on the database as well.

The next detection mechanism used is a combination of network and host-based intrusion
detection system. Host-based intrusion detection systems are placed on every host and a network-
based intrusion system is used to monitor the traffic between servers and proxies. Each web
server is rebooted periodically from a read-only trustworthy source.

In between each two reboots of a system, another detection mechanism is implemented.
This is a challenge-response protocol implemented by each proxy. A proxy can periodically send
out a challenge to any other proxy or server about a file on that system. The response is checked

106

against a precomputed response. There must be enough challenges generated to last between two
reboots of a system.

The final detection mechanism implemented is a runtime verification of the proxies. This
checks the behavior of each proxy during its execution. The system is modeled by a finite-state
machine and the state is monitored. There are different models depending on the current role of
the proxy. The proxy can both monitor its own behavior as well as the other proxies’ behavior.

Entities Protected: This technique is used to protect the availability and integrity of web
services.

Deployment: This technique would be deployed in the overall network architecture.

Execution Overhead:

• Duplex and triplex regimes have 200% and 300% overhead plus additional overheads as
follows.

• For one server without database access and a 1MB file, this added about a 31% overhead.

• For three servers without databases access and a 1MB file, this added about a 33% overhead.

• Database access time approximately doubled with this technique.

Memory Overhead:

• None

Network Overhead:

• Additional network traffic generated by the additional servers.

Hardware Costs:

• Additional platforms to host the additional variants.

• Additional network infrastructure to support this platform configuration.

Modification Costs:

 Data

 Source Code

 Compiler/Linker

107

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: A firewall able to effectively filter everything but HTTP traffic. The service
being provided should produce the same results under normal conditions on all systems. The technique
relies on a detection mechanism.

Weaknesses: An attacker could launch a large-scale attack that results in all the web servers
rebooting due to detections causing a denial of service. In addition, this technique provides no protection
against targeted attacks on one web server. Also, data leakage attacks are not protected.

108

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique could significantly increase the workload of the attacker. The
attacker would need to create an attack that would work on an unknown majority number of diversified
systems. An attacker may be able to leverage a script injection if it is not detected by any of the detection
mechanisms. The attacker also cannot directly access the servers making it more difficult to do
reconnaissance on those systems.

Availability: This technique was prototyped by the authors but is not publicly released.

Additional Considerations: The report lacks specifics on the types of diversity or how that may
impact security. It could be prohibitively expensive at large scale. The technique only handles HTTP
traffic. This method is limited and can only be applied to specific a system.

Proposed Research: One possible direction to look into would be to blacklist requests that caused
a server to go into a bad state. Future requests that are on the blacklist could be blocked at the proxy. This
would prevent a continuous denial of service attack using the same attack request continually. It may also
be possible to combine this technique with other movement methods on the web servers. This could make
them more resistant to a larger set of attacks and offer more detection mechanisms.

Funding: SRI International, DARPA

5.9 SELF-CLEANSING INTRUSION TOLERANCE

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [38, 47, 90] does not detect any attacks but assumes the system is
continually under attack. While this would not stop an attacker from injecting code, the minimal
exposure time before cleaning a system would require a fast-acting exploit. This would also stop
attackers from continuously persisting on these systems.

Description:

Details: The self-cleansing intrusion tolerance (SCIT) technique aims to decrease the
exposure time of a system by rotating it with copies. The copies that are not being used are
cleaned and restored to a pristine state. Each system copy is implemented in a virtual

109

environment. There is a separate system with a network attached memory utility that stores
persistent short-term information or session data between the systems. The final component is a
controller that manages the rotation of the systems and how long each system copy is exposed.
The systems can be in one of four states. The first state is active where it is online and
accepting/handling requests. The second state is grace period where it stops accepting new
requests and finishes processing existing requests. The third state is inactive where it is taken
offline to be restored. The final state is live spare where the system has been restored and is ready
to become active. There can be either one active server at a time serving one service or multiple
active servers serving multiple services. The latter would require additional algorithms to
determine which systems could be easily brought down next. The systems are rotated on the order
of minutes. The systems are on their own private virtual network and are not directly accessible
from the Internet. Connections to the systems are managed by a load balancing system.

Entities Protected: This technique protects servers by limiting their exposure time.

Deployment: This is a contained virtual environment and could be deployed on the servers.

Execution Overhead:

• Some unknown overhead due to virtualization.

• Significant overhead for cleaning the VMs.

Memory Overhead:

• None

Network Overhead:

• None—self-contained virtual network.

Hardware Costs:

• Additional hardware to support a virtualized environment.

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

110

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: The technique requires a virtualization infrastructure in place. It also requires
an automated re-imaging capability.

Weaknesses: The networked memory does not have any protection or integrity control. Since it is
accessible via all systems, an attacker could attempt to quickly corrupt or change the contents of this
storage. Another weakness is that every system is the same. If the attacker can find a working exploit
against one system, it would work on all systems at once. In fact, since exploits work very fast, this
technique provides little protection. The system also does not protect against data leakage attacks.

111

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique does not stop an attacker from exploiting a system. It
decreases the amount of time an attacker has to accomplish their goal. This makes it more difficult to
persist in the network. An attacker would have to compromise the load balancer or the networked
memory system or quickly jump to new systems as the older ones are being re-imaged.

Availability: This technique was prototyped by the authors but is not publicly released; see
http://scitlabs.com/.

Additional Considerations: The technique provides little protection at a large cost. The attacker
can always jump to the new platforms (since they are identical) and continue to persist. Moreover, the
overhead to re-image the systems can be very large. The technique is also limited to specific servers that
are almost stateless or the state can be persevered in the configuration (e.g., DNS server).

Proposed Research: One direction for this technique would be to develop a better way to protect
the network memory. If an attacker can continually change or corrupt the data, the effectiveness of this
technique is significantly decreased. Another direction this technique could take would be to introduce
diversity into the OSs. Different architectures, OSs, and servers that provide the same function could be
used to increase the workload of the attacker. This would reduce the likelihood of an attack working
across all systems. Also preserving the state beyond configuration files is a direction to explore.

Funding: Lockheed Martin, Virginia Center for Innovative Technologies

5.10 GENETIC ALGORITHMS FOR COMPUTER CONFIGURATIONS

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Technique Mitigated: Scanning

Details: This technique [39] has a long-term security goal and does not actively defend
against or respond to attacks. The idea is that the evolution of configurations over time effect the
lifetime of exploits and the varying configurations amongst systems helps prevent exploits from
working against multiple machines. The evolving configurations make collecting information
about a specific machine less reliable.

112

Description:

Details: This technique aims to find more secure configurations of systems over time using
ideas from genetics. The security of a configuration is defined as the number and severity of
security incidents reported while that configuration was active. A configuration can consist of
many parameters in a system such as which desktop manager is being used or which remote login
protocol is being used. The ideas that are being used from genetics include selection, crossover,
and mutation. Selection involves selecting the best configurations based on their security score.
Crossover involves taking two configurations and combining elements of each one to create a
new configuration. Mutation involves randomly changing parts of a configuration to make it
different from configurations on other systems. The goal is to create configurations with temporal
and spatial diversity. Temporal diversity means the configuration of one machine changes over
time. Spatial diversity means multiple computers do not have the same configuration at a given
time.

How this process works is that every system starts with the same configuration. Since no
other configurations exist yet, it is mutated to create a new configuration. If the resulting
configuration is reasonable, it is set as the active configuration. After some time has passed, the
security score is calculated for that configuration. If the configuration pool is not full, this
configuration is added into this pool otherwise it replaces the worst configuration in the pool. The
next iteration would involve taking the two best configurations from the pool, doing a crossover
to create a new configuration, and applying a mutation to add some additional randomness to it.
This new configuration then goes through the same process of seeing if it is a reasonable
configuration, making it active, and calculating its security score. This process repeats over many
iterations until ideally there are configurations that have no security incidents.

Entities Protected: This techniques aims to protect the OS or servers by finding better
configurations over time.

Deployment: This would be deployed on each system that has a similar purpose.

Execution Overhead:

• Unknown execution overhead due to reconfiguration.

Memory Overhead:

• None

Network Overhead:

• None

113

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

114

 Attack Launch

 Persistence

Interdependencies: A detection mechanism or set of mechanisms to be able to calculate the
security score is critical for this technique. It also assumes that the entire security posture of a system can
be controlled via configuration.

Weaknesses: This can be deceptive and give a false sense of security. A configuration can be
chosen as good but it could be the case where the system was just not under attack at the time. Another
large weakness of this technique is that the security score is based on detected attacks and relies on the
systems being constantly attacked. A stealthy attacker could still carry out their attack. It may also be
possible to manipulate the configuration selection by causing detections on configurations the attacker
does not want. Moreover, many important security aspects of a system cannot be controlled with a
configuration (see [66]). Also, it can take a long time to converge to a good configuration. The technique
does not protect against data leakage attacks or one-time attacks either.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: Depending on the configuration options being changed, this may have little
effect on the effort of an attacker. In ideal conditions and with strong detection mechanisms, it could
affect an attacker over time by making it more difficult for them to perform an attack.

Availability: This technique was prototyped by the author but is not publicly released.

Additional Considerations: Frequently changing the configurations can be impractical.
Functionality of the system may break because of reconfiguration. It can take a long time to converge to a
good configuration. Also systems evolve over time. New software could be installed, old software
removed, system patches applied, OS upgraded, etc. All these changes will result in new or removed
configuration options. Also the system crucially relies on a perfect detection and monitoring capability to
operate correctly.

Proposed Research: A possible future direction for this project would be to expand it from simple
configurations to actual software as well. It might try running a service with a specific server then later try
running the same service with a different server that provides similar functionality. This does not fix the
reliance on detection mechanisms. Additional aspects that would need to be investigated are how the
configurations are combined to create new configurations, how configurations are randomized, and how
long a configuration would need to be active to get a reasonable security score. Combining this technique
with other movement techniques that provide more proactive protection against classes of attacks might
provide more overall protection. The impact of configuration changes on the functionality of the system
must be studied.

115

Funding: Pacific Northwest National Laboratory

5.11 MOVING ATTACK SURFACE FOR WEB SERVICES

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Techniques Mitigated: Code Injection, Control Injection, and Scanning

Details: This technique [40, 92] can help mitigate a variety of attacks. Since the service is
being served randomly between systems with different frameworks, libraries, architectures,
virtualization technologies, and layouts, it is more difficult to construct exploits that will work
under every platform. The attacker also may not be able to predict when the system will change
or which system the load balancer will choose to service the request. The fact that the system is
changing constantly makes passively scanning and collecting information less useful.

Description:

Details: This technique employed diversification at different levels of a system and across
many systems to create a varying attack surface across all the systems. The technique is
composed of a frontend load balancer, a pool of virtual diversified systems, and a trustworthy
controller. The idea is to have a subset of the virtual systems online at a time and the load
balancer chooses which one will service a request. The trustworthy controller manages the virtual
systems. Virtual systems can be in one of three states: online, graceful shutdown, or offline. In
graceful shutdown, they do not accept new request and finish processing any existing requests. In
the offline mode, they are powered off. When a system is to come back online, it is restored to a
pristine state. The virtual systems are randomly rotated in and out by the trustworthy controller.
Three different mechanisms can trigger a system to be taken offline. The first mechanism can be
event driven where anomalous events are detected or integrity checks fail. The second mechanism
is a random selection where a system can be taken offline at any random time even if no
anomalous activity is detected. The third mechanism is a maximum lifespan where a system is
taken offline if the amount of time it has been online exceeds a limit in order to reduce exposure
to attacks. This technique does not support services that require persistent state because they are
wiped clean periodically. For this reason, the authors recommend a framework such a
Representational State Transfer (REST) so the web servers can be stateless and still provide
stateful services.

This diversification is done at the application level by using different implementations of
the web framework being employed or different implementations of software that those web
frameworks require. Diversification is done at the web server level by choosing different open

116

source and commercial web servers. Additional diversification is achieved by hosting these web
frameworks on the same web servers using different modules or technologies. Diversification is
achieved at the OS level by choosing from a variety of open source and commercial OSs
including Solaris, Windows, BSD flavors, and Linux flavors. Additional diversification is
achieved by putting in a mix of 32-bit and 64-bit versions. Diversification is achieved at the
virtualization level by using a mix of hypervisor-based and OS level virtualization technologies
that support some form of checkpointing and restoration of systems. With all these levels of
diversifications, the authors were able to come up with 1554 unique combinations.

Entities Protected: The primary function of this technique is to protect a web service, but
the diversification also helps protect the OS as a whole.

Deployment: This technique would be deployed in the web services.

Execution Overhead:

• K replicas impose at least K times overhead in execution.

• Some overhead imposed by running in a virtual environment.

Memory Overhead:

• K times memory used.

Network Overhead:

• None

Hardware Costs:

• Hardware to support the various virtualization setups.

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

117

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: If relying on the event-driven rotation, it is necessary to have good anomaly
and integrity checking mechanisms in place. This technique also requires a web framework that supports
running stateful services on stateless servers if stateful services are required. This is not straightforward to
achieve for arbitrary web services.

Weaknesses: This technique does not protect against web service logic bugs or failure to sanitize
input. As a result, attacks like SQL injections could be leveraged if the service does not properly sanitize
input or put other mitigations in place. The load balancer and trustworthy controller are both static
machines and could be potential targets for an attacker. If an attacker can compromise the trustworthy
controller, he could control or stop the system rotation process. If the system rotation process is not done
quickly enough, the attacker may still be able to accomplish his goal if he is not trying to be persistent. It
is also possible an attacker has a set of attacks that work only on certain combinations of software and the

118

rotations of systems may eventually get to that configuration. More importantly, this technique does not
protect against data leakage attacks or attacks against one machine.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique would slow down an attack and make it more difficult for
him to exploit the machines, but it would not stop him completely. An attacker still has the chance of
exploiting a system and achieving his goal before the active system changes. An attacker could also try to
leverage more advanced Control Injection attacks that could work across multiple systems.

Availability: This technique was prototyped by the authors but is not publicly released. It is
composed primarily of open source or commercial software.

Additional Considerations: The impact of diversity on identifying attacks is unknown. Having a
large number of diversified systems would increase the management and maintenance complexity. This
technique is only limited to a web server. Extending the technique to a generic service can be very
difficult.

Proposed Research: This technique could potentially be combined with additional internal OS
movement techniques to slow down the attackers further giving the system additional time to migrate
systems. Ensuring that the trustworthy controller is isolated and the virtual systems are not able to
manipulate it would also be a worthwhile avenue to explore. The impact of various types of diversity on
attacks must also be studied.

Funding: Unknown

5.12 LIGHTWEIGHT PORTABLE SECURITY

Last Updated: 6/29/2012

Defense Category: Dynamic Platforms

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [41] helps mitigate persistent threats on a system by ensuring the
OS boots into a clean and known-good state. The system can be rebooted in between sessions to
return the system to a good state removing any infections incurred during the last session.

119

Description:

Details: The Lightweight Portable Security technique involves booting a system into an
isolated and minimal OS. This OS resides only in the memory of the system and does not access
any internal persistent storage devices. The OS is on a read-only bootable device or media
ensuring that it cannot be corrupted or modified in a malicious manner. The OS is built off of the
Linux OS and includes a basic set of applications such as a web browser, smart card middleware
(such as the Department of Defense Common Access Card or U.S. Government Personal Identity
Verification card), encryption software, file browser, image viewer, PDF viewer, text editor,
remote desktop software, and SSH client. It also includes the ability to use external storage
devices such as USB hard drives and memory sticks. The public editions of this technique allow a
person to browse the Internet without putting their local machine at risk. The deluxe public
edition has all the software of the regular public edition with the inclusion of additional software
such as office software. The remote access version of this technique is meant to connect to
enterprise networks and use internal network resources and it is customized for each particular
customer.

Entities Protected: This technique protects a user session by booting into a known good
and clean state. There are two primary use cases for this technique. If a person wants to browse
untrusted websites and wants to protect his local computer, he can boot one of the public editions
of this technique. A person might not trust the local computer and he wants to protect his online
session. In this case, he can boot from one of the editions of this technique and do activities like
online banking or connect to his work network securely without worrying about the local machine
assuming the hardware/firmware is trustworthy.

Deployment: This technique would be deployed on a generic machine by booting from a
read-only media.

Execution Overhead:

• Extra time required for re-booting into another OS.

Memory Overhead:

• Unknown memory overhead due to removal of hard drive.

Network Overhead:

• Some overhead incurred if connecting through trusted networks.

Hardware Costs:

• None

120

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

(No modification is required)

 Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

121

 Persistence

Interdependencies: The technique assumes that secure and lightweight versions of the OSs are
available.

Weaknesses: This technique does not protect against compromised hardware in the system or
hardware connected externally to the system. An attacker could re-flash firmware on the machine and
persist. It is also possible for an untrusted external hardware device, such as a USB hard drive or memory
stick, connected to the local machine. Since the technique supports using external hardware, a new
session may not be trusted if these external devices are mounted automatically. More importantly, the
technique does not provide any protection after booting into a new OS. The sessions can still be
compromised and information can still leak. The technique relies on rebooting after performing any
important operation or for performing potentially dangerous actions (browsing an unknown website).

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique removes the persistence of attacks. It makes it harder for an
attacker to remain on the system. Once a new session is initiated, any malicious code that was placed on
the system will be removed.

Availability: This technique is available in three different editions. There is a public edition,
public-deluxe edition, and remote access edition. The first two editions are free to download and use, but
the third edition must be requested from the agency. See http://www.spi.dod.mil/lipose.htm.

Additional Considerations: This technique requires booting a system each time it needs to be
used. It can have a very large overhead due to rebooting. In many cases, it is difficult to distinguish
between benign and potentially dangerous actions. It must connect external devices for local persistent
storage. The OS runs completely in memory so the host would need an adequate amount in the local
machine.

Proposed Research: This technique does provide reasonable protection from persistent threats, but
it does not address all the locations a persistent threat could reside. The hardware firmware inside of the
host machine could have been tampered with in a malicious manner. An interesting research direction
might be to see if it is possible to leverage trusted hardware technologies to verify hardware has not been
tampered with as well. If the user intends to create a secure session because he does not trust the local
machine, it would also be good to look into making sure potential untrusted or malicious external devices
connected to the local machine are not automatically mounted into the trusted environment. One can also
look into making reboots faster and more efficient.

Funding: Air Force Research Laboratory

This page intentionally left blank.

123

6. DYNAMIC DATA

6.1 DATA DIVERSITY THROUGH FAULT TOLERANCE

Last Updated: 6/29/2012

Defense Category: Dynamic Data

Threat Model:

Attack Technique Mitigated: Resource

Details: This technique [42] was not designed to fight malicious input directly but it is
more focused on unintentional faults. Since it reprocesses data and does voting on the results, it
could help combat an attacker that is trying to manipulate or corrupt the output of a program or
service.

Description:

Details: This technique aims to increase the fault tolerance of an application by
reevaluating the input to a program using a different algorithm. These different algorithms can
produce exact equivalent output or they could be general algorithms that produce approximations
of the original output. The idea is a possible fault or corner-case for a specific input might be
avoided if it is calculated in a slightly different or semantically equivalent fashion. The technique
builds on the idea of N-version programming but uses a data-centric version of it the authors refer
to as N-copy programming. Input is passed into independently developed versions of a program.
The output of these is then passed to a voter that decides if the input is acceptable. If the output
does not look acceptable, a new algorithm is chosen to process the input and the cycle is done
again. If exact algorithms are being used, the voter can use the majority output as the good output.
If it switches to more generic algorithms that produce approximations, then the voting can
become subjective because the copies could produce different results that are still acceptable.

Entities Protected: This technique aims to protect a program by ensuring the output is
acceptable.

Deployment: This would be implemented into the code of a program on a system.

Execution Overhead:

• There may be some additional processing overhead imposed if the program needs to reprocess
the input.

124

• Running multiple copies of a program and waiting for voting results will add additional
overhead.

Memory Overhead:

• Extra memory used by running multiple versions of the program (roughly N times for N
copies).

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

125

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: The technique assumes that N different (independent) version of the algorithm
can be built.

Weaknesses: This technique relies on voting, so it is still possible for an attacker to corrupt all or
the majority of the processes in order to bypass the added protection. It may also still be possible for an
attacker to create output that still looks valid to the output checker so it is not rerun again with different
algorithms. Another possibility is that the differing algorithms might have no effect on the malicious
input.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: If an attacker is attempting to corrupt or manipulate the output of a program,
this could make it more difficult. The technique is mainly focused on integrity protection. If the
algorithms used to process the input are not sufficiently different between retries, an attacker may still be
able to complete their objective. If an attacker can accomplish their goals without needing the programs to
output, this may not have much of an impact.

Availability: This technique was tested by the authors but does not appear to be publicly available.

Additional Considerations: Creating a component that can accurately detect the validity of output
could be difficult for a program or service with varying and dynamic output. Also developing N different
algorithms is time consuming and requires redevelopment of an application.

Proposed Research: Some problems would need to be solved to make this technique more
reasonable. One of those is coming up with a reliable way to determine if output of a program is valid.
There are many applications and services now that have very dynamic and varying outputs so it may not

126

be trivial to determine if output is valid. The same can be true for the varying input processing algorithms.
It may not be an easy task to develop multiple ways to process the input inside of the application. It may
also not be an option to use more approximate methods if the accuracy of the output is important.
Automating the diversification of an algorithm is an important future direction.

Funding: NASA

6.2 REDUNDANT DATA DIVERSITY

Last Updated: 6/29/2012

Defense Category: Dynamic Data

Threat Model:

Attack Techniques Mitigated: Resource and Code Injection

Details: This technique [43] aims to help mitigate attacks that target specific data inside of
an application by way of malicious input. Each variant is running a different transformation of the
data such that one input would not be able to change all variants. This would cause a divergence
and it would be detected by the variant monitor. The change can also be done at a lower level
separating the address space of each variant or running each variant with different instructions.
This helps mitigate some code injection attacks or injection attacks that rely on specific memory
addresses.

Description:

Details: This technique is a variation of the N-variant programming technique. In involves
running multiple copies of a program that each run transformations of the original data being
protected without having to rely on secrets. These transformations should be semantically
equivalent and reversible. A monitor can watch the values of the data in each variant to detect if
there is a divergence and take appropriate action. This can be implemented on different levels
such as having variants use different memory address spaces, different instructions, or different
data representations.

The specific method for this technique analyzed was using different data representations.
This was implemented to protect user identification (UID) and group identification (GID) that are
used for determining permissions. This is implemented into the system kernel, then new system
calls are created to allow for synchronization, and other system calls are modified accordingly to
support the modified data. Each variant is modified to use new system calls for synchronization
and to support the new UID and GID representations. The variants synchronize on system calls.
Whenever one variant reaches a system call, it waits for the other to reach it as well. The inputs to
the system calls are verified before execution. The system call is only executed once and the

127

results are passed to each variant if it was an I/O based system call. If the program uses external
file, such as configuration files, a new one is created and tailored toward the specific variant. If
the program used the password file on the system and it contained some of the data being
randomized, a new password file would need to be created for each variant.

Entities Protected: This technique aims to protect data entities inside of a running program
on systems.

Deployment: Depending on the types of data being protected, it could be deployed at
different levels. The implementation described is implemented into the OS kernel.

Execution Overhead:

• Running the Apache Web Server unsaturated with 2-Variant UID imposed a 13% throughput
overhead and 14% latency overhead.

• Running the Apache Web Server saturated with 2-Variant UID imposed a 58% throughput
overhead and 135% latency overhead.

Memory Overhead:

• There will be additional memory used by running multiple variants simultaneously.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

128

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: This should not be combined with diversity techniques that change the
behavior of the program or make it perform semantically different. Such a technique would cause a
divergence that would trigger a detection in their monitor.

Weaknesses: An attacker could still target data parts of an application that are not randomized if
they can be used to mount an attack. An attacker could also try to use advanced control injection attacks
that could still potentially affect many or all variants. Also the technique proposed is very limited in scope
(only a very small portion of data on the system is randomized).

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

129

Impact on Attackers: This could make it much more difficult for an attacker to corrupt certain
important parts of an application if it was being protected properly by this technique.

Availability: This technique was prototyped by the authors but was not publicly released.

Additional Considerations: Techniques like this would have a larger overhead for computation-
intensive programs. Each variant would have to do the expensive computations. In addition, it can be very
challenging to expand this technique to the majority of data being processed on the system. There was no
mention of recovery if the monitor detects something malicious.

Proposed Research: This technique was currently only implemented to protect data inside of the
application. It could be extended to include some of the lower-level diversification techniques also
described in the report, such as instruction set tagging and address space separation. This would make the
application more resistant to different code injection attacks but would also add additional execution
overhead as well. Additional research may also be needed to overcome possible false positive detections
due to accidental divergences. These could happen because of operating signals reaching variants in
different positions of execution.

Funding: National Science Foundation

6.3 DATA RANDOMIZATION

Last Updated: 6/29/2012

Defense Category: Dynamic Data

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [44] helps protect against code injection attacks by randomizing
any code injected into the program. All data that is written to memory within a certain class is
randomized with a random key. This also helps protect against attacks that target pointers in
general such as function pointers or return addresses. These would also be randomized by this
technique using different keys. In addition, this technique would also provide some protection
from attacks that attempt to read or write arbitrary memory locations. Any functions that
attempted to write something would have that randomized as it was put into memory and reading
arbitrary memory locations would result in that data being randomized with the key.

Description:

Details: This is a compiler-based technique that provides probabilistic protection by
randomizing all the data that it stores in memory. All operands in a program within a class that

130

read and write memory are instrumented to perform an XOR of the data with a random key. All
operands that reference the same objects are grouped together. Each of these groups is
randomized with a different key that is generated when the program is started. These groups are
found during compile-time by using static analysis within the compiler. To improve performance,
operands that are classified as safe are not instrumented. An operand is considered safe if runtime
access to that operand can never violate memory safety. The compiler will then insert instructions
that perform the XOR operations for reading and writing to memory in the appropriate locations.
This technique also supports libraries. Wrappers can be created for the library functions and
system calls that receive or return pointers.

Entities Protected: This technique protects the data applications store in memory.

Deployment: This technique would be implemented in a compiler on a system. Each
program that wanted to use this technique would need to be compiled with this new compiler.

Execution Overhead:

• The average overhead for the tested benchmarks was 11% but it can be a wide range in either
direction.

Memory Overhead:

• The tested benchmarks had an average memory overhead of 1%.

Network Overhead:

• None

Hardware Costs:

• None

Modification Costs:

 Data

 Source Code

 Compiler/Linker

 Operating System

 Hardware

131

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: A good source of randomness for the key generation.

Weaknesses: It is still possible for an attacker to guess the randomization key to be able to
read/write data to/from memory (technique assumes memory secrecy). It is also still possible to attempt to
brute force the desired keys. This could result in a large number of program failures that would increase
the probability of detection. An attacker may also be able to get to the desired memory object if there is a
vulnerability in the same group of operands since they would use the same key. In order for this to be
effective, it requires that all libraries also be protected via wrappers. If any libraries are overlooked, that
opens the possibility to bypass this technique.

132

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: This technique would make exploiting a protected application more
difficult. An attacker would have to find a method to either leak the keys or guess the keys used to
randomize the data.

Availability: This technique was prototyped by the authors but was not publicly released.

Additional Considerations: It requires program recompilation. The size of the programs increased
by averages between 15% and 30%. Applying this technique to a wide range of programs can make it
impractical.

Proposed Research: One larger direction this technique could take would be to combine with other
memory protection techniques such as address space randomization. This would put further burden on the
attacker that is trying to execute low-level attacks. Also it would be important to study what types of
attacks can be mounted without crossing the groups (classes).

Funding: Microsoft Research

6.4 END-TO-END SOFTWARE DIVERSIFICATION

Last Updated: 6/29/2012

Defense Categories: Dynamic Data, Dynamic Software

Threat Model:

Attack Techniques Mitigated: Code Injection and Exploitation of Authentication

Details: This technique [45] has the potential to defend against different levels of code
injection as well as some authentication attacks. Randomizing the instruction sets, script
Application Programming Interface (API) randomization, randomizing the reference names of
stored data, and randomizing components of code can help fight high-level code injection attacks
like SQL injection attacks as well as low-level code injection attacks that target the internal
application. They can also help fight attacks that compromise authentication like cross-site
scripting (XSS) attacks that might try to inject code at a high level. Other diversification methods
that can be used with this technique can help mitigate injection at additional levels.

Description:

Details: The idea of this technique is to compose many different randomization methods
and apply them to aspects of a service that does not affect the functionality of the program. This

133

would involve building functionality into the core or subsystems of a service that allows various
aspects to be randomized. The example in the report is diversifying an Internet service. Some of
the proposed diversification methods include changing Hypertext Transport Protocol (HTTP)
keywords/syntax/headers/content encoding, Hypertext Markup Language (HTML) Document
Object Model (DOM) structures/identifiers, SQL keywords/syntax, database server instruction
set/IPaddress/port number/memory layout, database table names/column names, web server
instruction set/memory layout, and local files used by the servers. There are other aspects of such
a service that could also be diversified while not directly affecting the service functionality. Each
method of diversification would have its own side effects and performance implications. There
may also be other parts not identified that could also be used for diversification and coming up
with a complete list is a difficult problem. The number and type of things that can be diversified
will depend on the desired service and the software being used to provide that service. Another
aspect of this technique is how often the randomization happens. In the case of a web service, it
can be setup so that each user instance has a different randomization plan. It could also be
implemented that each user request causes a new randomization of some of the methods.

Entities Protected: This technique aims to protect a web server.

Deployment: This would be deployed on a server.

Execution Overhead:

• This will vary with the number and type of diversification techniques implemented. Low-level
emulated instruction randomization techniques would have a much higher overhead than
randomizing the table names in a database. The overhead may be significant.

Memory Overhead:

• This will also depend on the diversification techniques implemented. If memory layout
randomization is enabled, this could impose some overhead depending how it is implemented.

Network Overhead:

• Depending on the transformations applied to network protocols, this could increase the size of
network traffic or increase the processing time of the traffic.

Hardware Costs:

• None

Modification Costs:

 Data

134

 Source Code

 Compiler/Linker

 Operating System

 Hardware

 Infrastructure

Expertise Required to Implement:

 Simple Configuration/Installer

 Complex Configuration (System Admin)

 Custom Programmer (General Knowledge)

 Custom Programmer (Expert/Low-Level/Kernel)

Expertise Required to Operate:

 Seamless

 Simple Configuration

 Complex Configuration (System Admin)

 Expert Operator

Kill Chain Phases:

 Reconnaissance

 Access

 Exploit Development

 Attack Launch

 Persistence

Interdependencies: Not all combinations may be desirable. Combining methods of randomization
could affect the application in undesirable or unexpected ways. Certain combinations could also result in
a large overhead.

135

Weaknesses: Weaknesses associated with this technique will vary depending on the randomization
techniques implemented. Each technique will have its own weaknesses associated with it and combining
techniques could introduce additional weaknesses not present in the independent methods. Some
randomization methods may be limited by factors in the system such as the architecture. Despite all
randomization, a higher level protocol may be vulnerable to attacks.

Types of Weaknesses:

 Overcome Movement Predict Movement Limit Movement Disable Movement

Impact on Attackers: If that attacker can leverage vulnerabilities in a service that allows control of
the flow of the program, the attacker could still leverage more advanced techniques that do not rely on
code injection. Implementing many of these methods will increase the amount of work an attacker has to
do to exploit the system.

Availability: This was a research idea by the authors and did not appear to be implemented or
available.

Additional Considerations: The report lacks many specifics. It is only applied to a web server.
The actual impact of randomization in unknown. The overhead can be very large. Modifying the code to
support all these additional randomization abilities could introduce additional bugs/vulnerabilities.
Modifying the code to support all these additional randomization abilities could increase the maintenance
complexity of application. Determining which components and subcomponents of an application or
service could be a difficult and time-consuming task. The proposed randomization methods do not fix
security vulnerabilities or other logic errors that are part of the design of the software. A similar technique
is proposed in [59].

Proposed Research: This technique proposes many possible ways a specific web service could be
randomized. Coming up with a method to identify and test these methods is not an easy task. Any part
that is overlooked could become a potential attack vector. Determining which of these methods can be
safely combined could also be another difficult task. It could be the case that combining two methods
result in something breaking elsewhere in the service or system. Certain techniques will also have varying
impacts on performance and the combination of different methods could cause unexpected performance
issues. Overall, the composition of different randomization and diversification methods would need to be
further researched for this technique to be more feasible.

Funding: Unknown

This page intentionally left blank.

137

REFERENCES

1. http://cybersecurity.nitrd.gov/page/moving-target.

2. C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address Space Layout Permutation (ASLP):
Towards Fine-Grained Randomization of Commodity Software,” Computer Security Applications
Conference (2006).

3. E.D. Berger and B.G. Zorn, “DieHard: probabilistic memory safety for unsafe languages,” In
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM, New York, NY (2006) 158–168.

4. V. Iyer, A. Kanitkar, P. Dasgupta, and R. Srinivasan, “Preventing Overflow Attacks by Memory
Randomization,” In Proceedings of the 2010 IEEE 21st International Symposium on Software
Reliability Engineering (2010).

5. M. Chew and D. Song, Mitigating Buffer Overflows by Operating System Randomization. Technical
Report CMU-CS-02-197, Dept. of Computer Science, Carnegie Mellon Univ., 2002.

6. “Windows ISV Software Security Defenses,” Msdn.microsoft.com. Retrieved 10 April 2012.

7. “Mac OS X–Security–Keeps safe from viruses and malware,” Apple.com. Retrieved 10 April 2012.

8. “The NX Bit and ASLR,” Tom’s Hardware, 25 March 2009.

9. “Pwn2Own day 2: iPhone, BlackBerry beaten; Chrome, Firefox no-shows,” Ars Technica, 11 March
2011.

10. G. Zhu and A. Tyagi, “Protection against indirect overflow attacks on pointers,” In Proceedings of
the Second IEEE International Information Assurance Workshop (8–9 April 2004), pp. 97–106.

11. K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-Free: defeating return-oriented
programming through gadget-less binaries,” In Proceedings of the 26th Annual Computer Security
Applications Conference, New York, NY (2010), pp. 49–58.

12. W. Hu, J. Hiser, D. Williams, A. Filipi, J.W. Davidson, D. Evans, J.C. Knight, A. Nguyen-Tuong,
and J. Rowanhill, “Secure and practical defense against code-injection attacks using software,” In
Proceedings of the 2nd International Conference on Virtual Execution Environments (2006),
pp. 2–12.

13. X. Jiang, H.J. Wangz, D. Xu, and Y.-M. Wang, “RandSys: Thwarting Code Injection Attacks with
System Service Interface Randomization,” In Proceedings of the 26th IEEE International
Symposium on Reliable Distributed Systems (2007).

14. E.G. Barrantes, D.H. Ackley, S. Forrest, and D. Stefanovi, “Randomized instruction set emulation,”
ACM Trans. Inf. Syst. Secur. 8, 1 (February 2005).

138

15. S. Boyd and A. Keromytis, “SQLRand: Preventing SQL Injection Attacks,” In Applied
Cryptography and Network Security, vol. 3089, M. Jakobsson, M. Yung, and J. Zhou, Eds., Springer
Berlin/Heidelberg (2004), pp. 292–302.

16. Z. Liang, B. Liang, L. Li, W. Chen, Q. Kang, and Y. Gu, “Against Code Injection with System Call
Randomization,” In International Conference on Networks Security, Wireless Communications and
Trusted Computing (2009), vol. 1, pp. 584–587.

17. A.J. O’Donnell and H. Sethu, “On achieving software diversity for improved network security using
distributed coloring algorithms,” In Proceedings of the 11th ACM Conference on Computer and
Communications Security, New York, NY (2004), pp. 121–131.

18. T. Fraser, M. Petkac, and L. Badger, “Security Agility for Dynamic Execution Environments,”
Sep. 2002.

19. T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM Trans. Comput. Syst., vol. 28, no. 2,
pp. 4:1–4:54, Jul. 2010.

20. D. Chang, S. Hines, P. West, G. Tyson, and D. Whalley, “Program differentiation,” In Proceedings
of the 2010 Workshop on Interaction between Compilers and Computer Architecture, New York,
NY (2010), pp. 9:1–9:8.

21. B. Salamat, A. Gal, and M. Franz, “Reverse stack execution in a multi-variant execution
environment,” In Workshop on Compiler and Architectural Techniques for Application Reliability
and Security (2008).

22. D. Kewley, R. Fink, J. Lowry, and M. Dean, “Dynamic approaches to thwart adversary intelligence
gathering,” In Proceedings of DARPA Information Survivability Conference & Exposition II (2001),
vol.1, pp. 176–185, doi: 10.1109/DISCEX.2001.932214.

23. C.M. Price, E. Stanton, E.J. Lee, J.T. Michalski, K.S. Chua, Y.H. Wong, and C.P. Tan, “Network
Security Mechanisms Utilizing Dynamic Network Address Translation LDRD Project,” Sandia
National Labs, 2002 Nov 01.

24. J. Li, P.L. Reiher, and G.J. Popek, “Resilient self-organizing overlay networks for security update
delivery,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 1, 189–202 (Jan 2004).

25. H. Moniz, N.F. Neves, M. Correia, and P. Verissimo, “Randomized Intrusion-Tolerant
Asynchronous Services,” International Conference on Dependable Systems and Networks (25–28
June 2006), pp. 568–577.

26. S. Antonatos, P. Akritidis, E.P. Markatos, and K.G. Anagnostakis, “Defending against hitlist worms
using network address space randomization,” Comput. Netw. 51, 12 (August 2007), 3471–3490.

27. E. Al-Shaer, “Toward Network Configuration Randomization for Moving Target Defense,” Moving
Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, S. Jajodia, A.K. Ghosh,
V. Swarup, C. Wang, X.S. Wang (eds.), New York: Springer, 2011, 153–159.

139

28. J.D Touch, G.G. Finn, Y.-S. Wang, and L. Eggert, “DynaBone: dynamic defense using multi-layer
Internet overlays,” In Proceedings of DARPA Information Survivability Conference and Exposition,
vol. 2 (22–24 April 2003), pp. 271–276.

29. AFRL resources; personal communication.

30. M. Petkac and L. Badger, “Security agility in response to intrusion detection,” 16th Annual
Conference on Computer Security Applications, (Dec 2000) pp. 11–20, doi:
10.1109/ACSAC.2000.898853.

31. D. Williams, W. Hu; J.W. Davidson, J.D. Hiser, J.C. Knight, and A. Nguyen-Tuong, “Security
through Diversity: Leveraging Virtual Machine Technology,” IEEE Security & Privacy, vol. 7, no.1
(Jan–Feb 2009), pp. 26–33.

32. B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and M. Franz, “Runtime Defense against Code
Injection Attacks Using Replicated Execution,” IEEE Transactions on Dependable and Secure
Computing, vol. 8, no. 4 (July–Aug 2011), pp. 588–601.

33. D.A. Holland, A.T. Lim, and M.I. Seltzer. “An architecture a day keeps the hacker away,”
SIGARCH Comput. Archit. News 33, 1 (March 2005), 34–41.

34. B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser, “N-variant systems: a secretless framework for security through diversity,” In Proceedings
of the 15th conference on USENIX Security Symposium—Volume 15, USENIX Association,
Berkeley, CA (2006).

35. H. Okhravi, A. Comella, E. Robinson, and J. Haines, “Creating a cyber moving target for critical
infrastructure applications using platform diversity,” Elsevier International Journal of Critical
Infrastructure Protection, Volume 5, Issue 1, March 2012, Pages 30–39, ISSN 1874-5482.

36. B.J. Min and J.S. Choi, “An approach to intrusion tolerance for mission-critical services using
adaptability and diverse replication,” Future Gener. Comput. Syst. 20, 2 (February 2004), 303–313.
DOI=10.1016/S0167-739X(03)00146-8.

37. A. Saidane, V. Nicomette, and Y. Deswarte, “The Design of a Generic Intrusion-Tolerant
Architecture for Web Servers,” IEEE Transactions on Dependable and Secure Computing, vol. 6,
no. 1, (Jan–March 2009), pp. 45–58.

38. A.K. Bangalore and A.K. Sood, “Securing Web Servers Using Self Cleansing Intrusion Tolerance
(SCIT),” Second International Conference on Dependability, 2009 (18–23 June 2009) pp. 60–65.

39. M. Crouse and E.W. Fulp, “A moving target environment for computer configurations using Genetic
Algorithms,” 4th Symposium on Configuration Analytics and Automation (Oct. 31 2011–Nov. 1
2011), pp. 1–7.

40. Y. Huang and A. Ghosh, “Introducing Diversity and Uncertainty to Create Moving Attack Surfaces
for Web Services,” Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats,

140

S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, X.S. Wang (eds.), New York: Springer, 2011,
131–151.

41. Software Protection Initiative http://www.spi.dod.mil/lipose.htm.

42. P.E. Ammann and J.C. Knight, “Data diversity: an approach to software fault tolerance,” IEEE
Transactions on Computers, vol. 37, no. 4, pp. 418–425, Apr 1988 doi: 10.1109/12.2185.

43. A. Nguyen-Tuong, D. Evans, J.C. Knight, B. Cox, and J.W. Davidson, “Security through redundant
data diversity,” In Proceedings of The 38th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2008, Anchorage, Alaska, (2008), pp. 187–196, IEEE
Computer Society.

44. C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro, “Data randomization,” Microsoft
Research Tech. rep. (2008) MSR-TR-2008-120.

45. M. Christodorescu, M. Fredrikson, S. Jha, and J. Giffin, “End-to-End Software Diversification of
Internet Services,” Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats,
S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, X.S. Wang (eds.), New York: Springer, 2011,
117–130. 	

46. M. Howard, “Fending Off Future Attacks by Reducing Attack Surface.” Microsoft Corp, February 4,
2003.

47. Y. Huang, D. Arsenault, and A. Sood, “Incorruptible system self-cleansing for intrusion tolerance,”
25th IEEE International Performance, Computing, and Communications Conference (10–12 April
2006), pp. 4–496.

48. K. Scott and J. Davidson, “Safe virtual execution using software dynamic translation,” Proceedings
of the 18th Annual Computer Security Applications Conference (2002), pp. 209–218.

49. T. Wei, T. Wang, L. Duan, and J. Luo, “INSeRT: Protect Dynamic Code Generation against
spraying,” International Conference on Information Science and Technology (26–28 March 2011),
pp. 323–328.

50. T. Jackson, B. Salamat, G. Wagner, C. Wimmer, and M. Franz, “On the effectiveness of multi-
variant program execution for vulnerability detection and prevention,” In Proceedings of the 6th
International Workshop on Security Measurements and Metrics (2010), ACM, New York, NY,
Article 7, 8 pages.

51. M. Hafiz and R.E. Johnson, “Security-oriented program transformations,” In Proceedings of the 5th
Annual Workshop on Cyber Security and Information Intelligence Research: Cyber Security and
Information Intelligence Challenges and Strategies (2009), F. Sheldon, G. Peterson, A. Krings, R.
Abercrombie, and A. Mili (eds.). ACM, New York, NY, Article 12, 4 pages.

52. T. Jackson, C. Wimmer, and M. Franz, “Multi-variant program execution for vulnerability detection
and analysis,” In Proceedings of the Sixth Annual Workshop on Cyber Security and Information

141

Intelligence Research (2010), F.T. Sheldon, S. Prowell, R.K. Abercrombie, and A. Krings (Eds.)
ACM, New York, NY, Article 38, 4 pages.

53. B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: intrusion detection using parallel
execution and monitoring of program variants in user-space,” In Proceedings of the 4th ACM
European Conference on Computer Systems (2009) ACM, New York, NY, 33–46,
DOI=10.1145/1519065.1519071 http://doi.acm.org/10.1145/1519065.1519071.

54. M. Franz, “E unibus pluram: massive-scale software diversity as a defense mechanism,” In
Proceedings of the 2010 Workshop on New Security Paradigms (2010), ACM, New York, NY, 7–
16, DOI=10.1145/1900546.1900550.

55. A. Nguyen-Tuong, A. Wang, J.D. Hiser, J.C. Knight, and J.W. Davidson, “On the effectiveness of
the metamorphic shield,” In Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume (2010), C.E. Cuesta (Ed.). ACM, New York, NY, 170–174.

56. Y. Weiss and E.G. Barrantes, “Known/Chosen Key Attacks against Software Instruction Set
Randomization,” In Proceedings of the 22nd Annual Computer Security Applications
Conference (2006), IEEE Computer Society, Washington, DC, 349–360.
DOI=10.1109/ACSAC.2006.33 http://dx.doi.org/10.1109/ACSAC.2006.33.

57. S.W. Boyd, G.S. Kc, M.E. Locasto, A.D. Keromytis, and V. Prevelakis, “On the General
Applicability of Instruction-Set Randomization,” IEEE Trans. Dependable Secur. Comput. 7, 3 (July
2010), 255–270.

58. A.D. Keromytis, “Randomized Instruction Sets and Runtime Environments Past Research and
Future Directions,” IEEE Security and Privacy 7, 1 (January 2009), 18–25.

59. F. Majorczyk and J.-C. Demay, “Automated Instruction-Set Randomization for Web Applications in
Diversified Redundant Systems,” International Conference on Availability, Reliability and Security
(16–19 March 2009), pp. 978–983.

60. M. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, and W.S. Beebee Jr, “Enhancing server
availability and security through failure-oblivious computing,” In Proceedings of the 6th Conference
on Symposium on Operating Systems Design & Implementation—Volume 6, USENIX Association,
Berkeley, CA (2004), 21-21.

61. G. Portokalidis and A.D. Keromytis, “Fast and practical instruction-set randomization for
commodity systems,” In Proceedings of the 26th Annual Computer Security Applications
Conference ACM, New York, NY (2010), 41–48.

62. G.S. Kc, A.D. Keromytis, and V. Prevelakis, “Countering code-injection attacks with instruction-set
randomization,” In Proceedings of the 10th ACM Conference on Computer and Communications
Security, ACM, New York, NY (2003), 272–280. DOI=10.1145/948109.948146 http://doi.acm.org/
10.1145/948109.948146.

142

63. E.G. Barrantes, D.H. Ackley, T.S. Palmer, D. Stefanovic, and D.D. Zovi, “Randomized instruction
set emulation to disrupt binary code injection attacks,” In Proceedings of the 10th ACM Conference
on Computer and Communications Security, ACM, New York, NY (2003), 281–289.

64. L.Q. Nguyen, T. Demir, J. Rowe, F. Hsu, and K. Levitt, “A framework for diversifying windows
native APIs to tolerate code injection attacks,” In Proceedings of the 2nd ACM Symposium on
Information, Computer and Communications Security, R. Deng and P. Samarati (Eds.). ACM, New
York, NY (2007), 392–394.

65. A.N. Sovarel, D. Evans, and N. Paul, “Where’s the FEEB? the effectiveness of instruction set
randomization,” In Proceedings of the 14th Conference on USENIX Security Symposium—Volume
14, USENIX Association, Berkeley, CA (2005), 10-10.

66. V. Stankovic, A.N. Bessani, A. Daidone, I. Gashi, R.R. Obelheiro, and P. Sousa, “Enhancing
Fault/Intrusion Tolerance through Design and Configuration Diversity,” Paper presented at the 3rd
Workshop on Recent Advances on Intrusion-Tolerant Systems, Jun 2009, Estoril, Lisbon, Portugal.

67. S.B.E. Raj and G. Varghese, “Analysis of intrusion-tolerant architectures for Web Servers,”
International Conference on Emerging Trends in Electrical and Computer Technology, (23–24
March 2011), pp. 998–1003.

68. C. Taylor and J. Alves-Foss, “Diversity as a computer defense mechanism,” In Proceedings of the
2005 Workshop on New Security Paradigms, ACM, New York, NY (2005), 11–14.

69. R.A. Maxion, “Use of diversity as a defense mechanism,” In Proceedings of the 2005 Workshop on
New Security Paradigms, ACM, New York, NY (2005), 21–22. DOI=10.1145/1146269.1146277
http://doi.acm.org/10.1145/1146269.1146277.

70. K. Beznosov and P. Kruchten, “Towards agile security assurance,” In Proceedings of the 2004
Workshop on New Security Paradigms, ACM, New York, NY (2004), 47–54.

71. P. Paruchuri, M. Tambe, F. Ord, and S. Kraus, “Security in multiagent systems by policy
randomization,” In Proceedings of The Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, ACM, New York, NY (2006), 273–280.

72. J. Xu, Z. Kalbarczyk, and R.K. Iyer, “Transparent runtime randomization for security,” In
Proceedings of the 22nd International Symposium on Reliable Distributed Systems (6–18 Oct. 2003),
pp. 260–269.

73. L. Li, J.E. Just, and R. Sekar, “Address-Space Randomization for Windows Systems,” In
Proceedings of the 22nd Annual Computer Security Applications Conference, IEEE Computer
Society, Washington, DC, (2006), 329–338.

74. G.F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically Returning to Randomized
lib(c),” In Proceedings of the 2009 Annual Computer Security Applications Conference, IEEE
Computer Society, Washington, DC (2009), 60–69.

143

75. M. Abadi and G. Plotkin, “On Protection by Layout Randomization,” In Proceedings of the 2010
23rd IEEE Computer Security Foundations Symposium, IEEE Computer Society, Washington, DC
(2010), 337–351, DOI=10.1109/CSF.2010.30 http://dx.doi.org/10.1109/CSF.2010.30.

76. O. Whitehouse. “An analysis of Address Space Layout Randomization on Windows Vista,”
Symantec Advanced Threat Research, http://www.symantec.com/avcenter/reference/
Address_Space_Layout_Randomization.pdf

77. A. Sotirov and M. Dowd, “Bypassing browser memory protections in Windows Vista,”
http://www.phreedom.org/research/bypassing-browser-memory-protections/bypassing-browser-
memory-protections.pdf

78. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On the effectiveness of
address-space randomization,” In Proceedings of the 11th ACM Conference on Computer and
Communications Security, ACM, New York, NY (2004), 298–307.

79. A. Sotirov and M. Dowd, “Bypassing Browser Memory Protections Setting back browser security by
10 years,” http://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf.

80. S. Bhatkar, R. Sekar, and D.C. DuVarney, “Efficient techniques for comprehensive protection from
memory error exploits,” In Proceedings of the 14th Conference on USENIX Security Symposium—
Volume 14, USENIX Association, Berkeley, CA (2005), 17-17.

81. H. Shacham, “The geometry of innocent flesh on the bone: return-into-libc without function calls (on
the x86),” In Proceedings of the 14th ACM Conference on Computer and Communications Security,
ACM, New York, NY (2007), 552–561.

82. S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy, “Return-
oriented programming without returns,” In Proceedings of the 17th ACM Conference on Computer
and Communications Security, ACM, New York, NY (2010), 559–572.

83. R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter, “Breaking the
memory secrecy assumption,” In Proceedings of the Second European Workshop on System
Security, ACM, New York, NY (2009), 1–8, DOI=10.1145/1519144.1519145 http://doi.acm.org/
10.1145/1519144.1519145.

84. H. Xu and S.J. Chapin, “Improving address space randomization with a dynamic offset
randomization technique,” In Proceedings of the 2006 ACM Symposium on Applied Computing,
ACM, New York, NY (2006), 384–391.

85. G. Novark and E.D. Berger, “DieHarder: securing the heap,” In Proceedings of the 17th ACM
Conference on Computer and Communications Security, ACM, New York, NY (2010), 573–584.
DOI=10.1145/1866307.1866371 http://doi.acm.org/10.1145/1866307.1866371.

86. S. Bhatkar, D.C. DuVarney, and R. Sekar, “Address obfuscation: an efficient approach to combat a
board range of memory error exploits,” In Proceedings of the 12th Conference on USENIX Security
Symposium—Volume 12, USENIX Association, Berkeley, CA (2003), 8-8.

144

87. Tyler Durden, “Bypassing PaX ASLR protection.” Phrack, Volume 0x0b, Issue 0x3b, Phile #0x09 of
0x12. http://www.phrack.org/issues.html?issue=59&id=9.

88. S. Forrest, A. Somayaji, and D. Ackley, “Building Diverse Computer Systems,” In Proceedings of
the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI), IEEE Computer Society,
Washington, DC (1997).

89. A. Smirnov and T. Chiueh, “A Portable Implementation Framework for Intrusion-Resilient Database
Management Systems,” In Proceedings of the 2004 International Conference on Dependable
Systems and Networks, IEEE Computer Society, Washington, DC (2004), 443.

90. D. Arsenault, A. Sood, and Y. Huang, “Secure, Resilient Computing Clusters: Self-Cleansing
Intrusion Tolerance with Hardware Enforced Security (SCIT/HES),” In Proceedings of The Second
International Conference on Availability, Reliability and Security, IEEE Computer Society,
Washington, DC (2007), 343–350.

91. P. Sousa, A. Neves Bessani, M. Correia, N. Ferreira Neves, and P. Verissimo, “Resilient Intrusion
Tolerance through Proactive and Reactive Recovery,” In Proceedings of the 13th Pacific Rim
International Symposium on Dependable Computing, IEEE Computer Society, Washington, DC
(2007), 373–380.

92. Y. Huang and A.K. Ghosh, “Automating Intrusion Response via Virtualization for Realizing
Uninterruptible Web Services,” Eighth IEEE International Symposium on Network Computing and
Applications (9–11 July 2009), pp. 114–117.

93. S. Sidiroglou, O. Laadan, A.D. Keromytis, and J. Nieh, “Using Rescue Points to Navigate Software
Recovery,” In Proceedings of the 2007 IEEE Symposium on Security and Privacy, IEEE Computer
Society, Washington, DC (2007), 273–280, DOI=10.1109/SP.2007.38.

94. P.V. Prahbu, Y. Song and S.J. Stolfo, “Smashing the Stack with Hydra: The Many Heads of
Advanced Polymorphic Shellcode,” Technical Report CUCS-037-09, Columbia University, August
2009.

95. Y. Song, M.E. Locasto, A. Stavrou, A.D. Keromytis, and S.J. Stolfo, “On the infeasibility of
modeling polymorphic shellcode,” In Proceedings of the 14th ACM Conference on Computer and
Communications Security (2007), ACM, New York, NY, 541–551.

96. M. Frantzen and M. Shuey, “StackGhost: Hardware facilitated stack protection,” In Proceedings of
the 10th Conference on USENIX Security Symposium—Volume 10, USENIX Association, Berkeley,
CA (2001), 5-5.

97. C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang, “StackGuard: automatic adaptive detection and prevention of buffer-overflow attacks,” In
Proceedings of the 7th Conference on USENIX Security Symposium—Volume 7, USENIX
Association, Berkeley, CA (1998), 5-5.

145

98. C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointguardTM: protecting pointers from buffer
overflow vulnerabilities,” In Proceedings of the 12th Conference on USENIX Security Symposium—
Volume 12, USENIX Association, Berkeley, CA (2003), 7-7.

99. V.R. Vasisht and H.-H.S. Lee, “SHARK: Architectural support for autonomic protection against
stealth by rootkit exploits,” In Proceedings of the 41st Annual IEEE/ACM International Symposium
on Microarchitecture, IEEE Computer Society, Washington, DC (2008), 106–116.

100. N. Joukov, A. Kashyap, G. Sivathanu, and E. Zadok, “An electric fence for kernel buffers,” In
Proceedings of the 2005 ACM Workshop on Storage Security and Survivability, ACM, New York,
NY (2005), 37–43.

101. L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: a detection tool to defend against return-
oriented programming attacks,” In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ACM, New York, NY (2011), 40–51.

102. V. Kiriansky, D. Bruening, and S.P. Amarasinghe, “Secure Execution via Program Shepherding,”
In Proceedings of the 11th USENIX Security Symposium, Dan Boneh (Ed.), USENIX Association,
Berkeley, CA (2002), 191–206.

103. P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing Memory Error Exploits with
WIT,” In Proceedings of the 2008 IEEE Symposium on Security and Privacy, IEEE Computer
Society, Washington, DC (2008), 263–277.

104. Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G.C. Necula, “XFI: software guards for system
address spaces,” In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, USENIX Association, Berkeley, CA (2006), 75–88.

105. G.C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer, “CCured: type-safe retrofitting of
legacy software,” ACM Trans. Program. Lang. Syst. (2005) 27, 3.

106. Common Attack Pattern Enumeration and Classification (CAPEC) http://capec.mitre.org/.

107. C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A Generic Method for Automatic
Software Repair,” IEEE Transactions on Software Engineering (Jan/Feb 2012), IEEE Computer
Society, Washington, DC (2012), vol. 38, no. 1.

108. Z. Wong and R.B. Lee, “New Cache Designs for Thwarting Software Cache-based Side Channel
Attacks,” International Symposium on Computer Architecture, ACM, San Diego, CA (2007),
494–505.

This page intentionally left blank.

147

LIST OF ACRONYMS

AES Advanced Encryption Standard

API application programming interface

ARCSYNE Active Repositioning in Cyberspace for SYNchronized Evasion

ARP Address Resolution Protocol

ASLR address space layout randomization

CAPEC Common Attack Pattern Enumeration and Classification

CPU central processing unit

CSD calling sequence diversity

DARPA Defense Advanced Research Projects Agency

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DOM Document Object Model

DoS denial of service

DynaBone Dynamic Backbone

DYNAT dynamic network address translation

ECB Electronic Code Book

ELF Executable and Linkable Format

GCC GNU Compiler Collection

GID group identification

GOTS government off-the-shelf

HTML Hypertext Markup Language

148

HTTP Hypertext Transfer Protocol

I/O input/output

IDS intrusion detection system

IP Internet Protocol

IPSec IP Security

IRF Instruction Register File

ISR Instruction Set Randomization

LAN local area network

MAC media access control

MPLS Multi-Protocol Label Switching

MUTE Mutable Network

NASR Network Address Space Randomization

NAT Network Address Translation

NOP no operation performed

NPV Node Path Vector

OS operating system

P2P peer-to-peer

PPV Parent Path Vector

REST representational state transfer

RISE randomized instruction set emulation

RITAS randomized intrusion-tolerant asynchronous services

ROP return-oriented programming

SCIT self-cleansing intrusion tolerance

149

SQL Structured Query Language

SSL Secure Sockets Layer

TALENT Trusted dynAmic Logical hEterogeNeity sysTem

TCP Transmission Control Protocol

ToS type of service

UDP User Datagram Protocol

UID user identification

VLAN virtual local area network

VM virtual machine

VPN virtual private network

XSS cross-site scripting

This page intentionally left blank.

	EXECUTIVE SUMMARY
	TABLE OF CONTENTS
	1. INTRODUCTION AND TAXONOMY
	1.1 TAXONOMY OF MOVING TARGET TECHNIQUES
	1.2 TAXONOMY OF ATTACK TECHNIQUES
	1.3 TAXONOMY OF ENTITIES PROTECTED
	1.4 CYBER KILL CHAIN
	1.5 TAXONOMY OF WEAKNESSES
	1.6 SCOPE

	2. DYNAMIC RUNTIME ENVIRONMENT
	2.1 ADDRESS SPACE RANDOMIZATION
	2.2 INSTRUCTION SET RANDOMIZATION

	3. DYNAMIC SOFTWARE
	3.1 SOFTWARE DIVERSITY USING DISTRIBUTED COLORING ALGORITHMS
	3.2 SECURITY AGILITY FOR DYNAMIC EXECUTION ENVIRONMENTS
	3.3 PROACTIVE OBFUSCATION
	3.4 PROGRAM DIFFERENTIATION
	3.5 REVERSE STACK EXECUTION IN A MULTIVARIANT EXECUTION ENVIRONMENT

	4. DYNAMIC NETWORKS
	4.1 DYNAMIC NETWORK ADDRESS TRANSLATION
	4.2 REVERE
	4.3 RANDOMIZED INTRUSION-TOLERANT ASYNCHRONOUS SERVICES
	4.4 NETWORK ADDRESS SPACE RANDOMIZATION
	4.5 MUTABLE NETWORK
	4.6 DYNAMIC BACKBONE
	4.7 ACTIVE REPOSITIONING IN CYBERSPACE FOR SYNCHRONIZED EVASION

	5. DYNAMIC PLATFORMS
	5.1 SECURITY AGILITY TOOLKIT
	5.2 GENESIS
	5.3 MULTIVARIANT EXECUTION
	5.4 DIVERSITY THROUGH MACHINE DESCRIPTIONS
	5.5 N-VARIANT SYSTEMS
	5.6 TRUSTED DYNAMIC LOGICAL HETEROGENEITY SYSTEM
	5.7 INTRUSION TOLERANCE FOR MISSION-CRITICAL SERVICES
	5.8 GENERIC INTRUSION-TOLERANT ARCHITECTURES FOR WEB SERVERS
	5.9 SELF-CLEANSING INTRUSION TOLERANCE
	5.10 GENETIC ALGORITHMS FOR COMPUTER CONFIGURATIONS
	5.11 MOVING ATTACK SURFACE FOR WEB SERVICES
	5.12 LIGHTWEIGHT PORTABLE SECURITY

	6. DYNAMIC DATA
	6.1 DATA DIVERSITY THROUGH FAULT TOLERANCE
	6.2 REDUNDANT DATA DIVERSITY
	6.3 DATA RANDOMIZATION
	6.4 END-TO-END SOFTWARE DIVERSIFICATION

	REFERENCES
	LIST OF ACRONYMS

